Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Development ; 151(8)2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38602485

ABSTRACT

Alveologenesis, the final stage in lung development, substantially remodels the distal lung, expanding the alveolar surface area for efficient gas exchange. Secondary crest myofibroblasts (SCMF) exist transiently in the neonatal distal lung and are crucial for alveologenesis. However, the pathways that regulate SCMF function, proliferation and temporal identity remain poorly understood. To address this, we purified SCMFs from reporter mice, performed bulk RNA-seq and found dynamic changes in Hippo-signaling components during alveologenesis. We deleted the Hippo effectors Yap/Taz from Acta2-expressing cells at the onset of alveologenesis, causing a significant arrest in alveolar development. Using single cell RNA-seq, we identified a distinct cluster of cells in mutant lungs with altered expression of marker genes associated with proximal mesenchymal cell types, airway smooth muscle and alveolar duct myofibroblasts. In vitro studies confirmed that Yap/Taz regulates myofibroblast-associated gene signature and contractility. Together, our findings show that Yap/Taz is essential for maintaining functional myofibroblast identity during postnatal alveologenesis.


Subject(s)
Cell Differentiation , Hippo Signaling Pathway , Morphogenesis , Myofibroblasts , Protein Serine-Threonine Kinases , Pulmonary Alveoli , Signal Transduction , YAP-Signaling Proteins , Animals , Mice , Myofibroblasts/metabolism , Myofibroblasts/cytology , YAP-Signaling Proteins/metabolism , YAP-Signaling Proteins/genetics , Pulmonary Alveoli/metabolism , Pulmonary Alveoli/cytology , Protein Serine-Threonine Kinases/metabolism , Protein Serine-Threonine Kinases/genetics , Morphogenesis/genetics , Mesoderm/metabolism , Adaptor Proteins, Signal Transducing/metabolism , Adaptor Proteins, Signal Transducing/genetics , Lung/metabolism , Organogenesis/genetics , Gene Expression Regulation, Developmental
2.
Adv Exp Med Biol ; 1413: 139-154, 2023.
Article in English | MEDLINE | ID: mdl-37195530

ABSTRACT

The structure of the mammalian lung controls the flow of air through the airways and into the distal alveolar region where gas exchange occurs. Specialized cells in the lung mesenchyme produce the extracellular matrix (ECM) and growth factors required for lung structure. Historically, characterizing the mesenchymal cell subtypes was challenging due to their ambiguous morphology, overlapping expression of protein markers, and limited cell-surface molecules needed for isolation. The recent development of single-cell RNA sequencing (scRNA-seq) complemented with genetic mouse models demonstrated that the lung mesenchyme comprises transcriptionally and functionally heterogeneous cell-types. Bioengineering approaches that model tissue structure clarify the function and regulation of mesenchymal cell types. These experimental approaches demonstrate the unique abilities of fibroblasts in mechanosignaling, mechanical force generation, ECM production, and tissue regeneration. This chapter will review the cell biology of the lung mesenchyme and experimental approaches to study their function.


Subject(s)
Extracellular Matrix , Lung , Mice , Animals , Lung/metabolism , Extracellular Matrix/physiology , Fibroblasts , Intercellular Signaling Peptides and Proteins/metabolism , Mesoderm/metabolism , Mammals
3.
Development ; 149(21)2022 11 01.
Article in English | MEDLINE | ID: mdl-36239312

ABSTRACT

There is a growing amount of data uncovering the cellular diversity of the pulmonary circulation and mechanisms governing vascular repair after injury. However, the molecular and cellular mechanisms contributing to the morphogenesis and growth of the pulmonary vasculature during embryonic development are less clear. Importantly, deficits in vascular development lead to significant pediatric lung diseases, indicating a need to uncover fetal programs promoting vascular growth. To address this, we used a transgenic mouse reporter for expression of Cxcl12, an arterial endothelial hallmark gene, and performed single-cell RNA sequencing on isolated Cxcl12-DsRed+ endothelium to assess cellular heterogeneity within pulmonary endothelium. Combining cell annotation with gene ontology and histological analysis allowed us to segregate the developing artery endothelium into functionally and spatially distinct subpopulations. Expression of Cxcl12 is highest in the distal arterial endothelial subpopulation, a compartment enriched in genes for vascular development. Accordingly, disruption of CXCL12 signaling led to, not only abnormal branching, but also distal vascular hypoplasia. These data provide evidence for arterial endothelial functional heterogeneity and reveal conserved signaling mechanisms essential for pulmonary vascular development.


Subject(s)
Endothelium, Vascular , Lung , Mice , Pregnancy , Animals , Female , Endothelium, Vascular/metabolism , Morphogenesis , Mice, Transgenic , Embryonic Development
4.
Science ; 371(6534)2021 03 12.
Article in English | MEDLINE | ID: mdl-33707239

ABSTRACT

The lung alveolus is the functional unit of the respiratory system required for gas exchange. During the transition to air breathing at birth, biophysical forces are thought to shape the emerging tissue niche. However, the intercellular signaling that drives these processes remains poorly understood. Applying a multimodal approach, we identified alveolar type 1 (AT1) epithelial cells as a distinct signaling hub. Lineage tracing demonstrates that AT1 progenitors align with receptive, force-exerting myofibroblasts in a spatial and temporal manner. Through single-cell chromatin accessibility and pathway expression (SCAPE) analysis, we demonstrate that AT1-restricted ligands are required for myofibroblasts and alveolar formation. These studies show that the alignment of cell fates, mediated by biophysical and AT1-derived paracrine signals, drives the extensive tissue remodeling required for postnatal respiration.


Subject(s)
Cell Lineage/genetics , Epigenesis, Genetic , Pulmonary Alveoli/embryology , Alveolar Epithelial Cells/cytology , Alveolar Epithelial Cells/metabolism , Animals , Cells, Cultured , Cues , Epigenomics , Humans , Mice , Mice, Transgenic , Myofibroblasts/cytology , Myofibroblasts/metabolism , Pulmonary Alveoli/cytology , Pulmonary Alveoli/metabolism , RNA-Seq/methods , Signal Transduction , Single-Cell Analysis , Transcriptome
SELECTION OF CITATIONS
SEARCH DETAIL
...