Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Elife ; 122023 09 20.
Article in English | MEDLINE | ID: mdl-37728328

ABSTRACT

The Maillard reaction, a chemical reaction between amino acids and sugars, is exploited to produce flavorful food ubiquitously, from the baking industry to our everyday lives. However, the Maillard reaction also occurs in all cells, from prokaryotes to eukaryotes, forming advanced glycation end-products (AGEs). AGEs are a heterogeneous group of compounds resulting from the irreversible reaction between biomolecules and α-dicarbonyls (α-DCs), including methylglyoxal (MGO), an unavoidable byproduct of anaerobic glycolysis and lipid peroxidation. We previously demonstrated that Caenorhabditis elegans mutants lacking the glod-4 glyoxalase enzyme displayed enhanced accumulation of α-DCs, reduced lifespan, increased neuronal damage, and touch hypersensitivity. Here, we demonstrate that glod-4 mutation increased food intake and identify that MGO-derived hydroimidazolone, MG-H1, is a mediator of the observed increase in food intake. RNAseq analysis in glod-4 knockdown worms identified upregulation of several neurotransmitters and feeding genes. Suppressor screening of the overfeeding phenotype identified the tdc-1-tyramine-tyra-2/ser-2 signaling as an essential pathway mediating AGE (MG-H1)-induced feeding in glod-4 mutants. We also identified the elt-3 GATA transcription factor as an essential upstream regulator for increased feeding upon accumulation of AGEs by partially controlling the expression of tdc-1 gene. Furthermore, the lack of either tdc-1 or tyra-2/ser-2 receptors suppresses the reduced lifespan and rescues neuronal damage observed in glod-4 mutants. Thus, in C. elegans, we identified an elt-3 regulated tyramine-dependent pathway mediating the toxic effects of MG-H1 AGE. Understanding this signaling pathway may help understand hedonistic overfeeding behavior observed due to modern AGE-rich diets.


Subject(s)
Caenorhabditis elegans Proteins , Caenorhabditis elegans , Animals , Caenorhabditis elegans/physiology , Caenorhabditis elegans Proteins/genetics , Caenorhabditis elegans Proteins/metabolism , Pyruvaldehyde/metabolism , Magnesium Oxide/metabolism , GATA Transcription Factors/genetics , GATA Transcription Factors/metabolism , Signal Transduction , Tyramine/metabolism , Glycation End Products, Advanced/metabolism , Eating
2.
Cell Metab ; 28(3): 337-352, 2018 09 04.
Article in English | MEDLINE | ID: mdl-30184484

ABSTRACT

Accumulation of advanced glycation end products (AGEs) on nucleotides, lipids, and peptides/proteins are an inevitable component of the aging process in all eukaryotic organisms, including humans. To date, a substantial body of evidence shows that AGEs and their functionally compromised adducts are linked to and perhaps responsible for changes seen during aging and for the development of many age-related morbidities. However, much remains to be learned about the biology of AGE formation, causal nature of these associations, and whether new interventions might be developed that will prevent or reduce the negative impact of AGEs-related damage. To facilitate achieving these latter ends, we show how invertebrate models, notably Drosophila melanogaster and Caenorhabditis elegans, can be used to explore AGE-related pathways in depth and to identify and assess drugs that will mitigate against the detrimental effects of AGE-adduct development.


Subject(s)
Aging/metabolism , Caenorhabditis elegans/metabolism , Drosophila melanogaster/metabolism , Glycation End Products, Advanced/metabolism , Metabolic Diseases/metabolism , Neurodegenerative Diseases/metabolism , Animals , Humans , Mice , Models, Animal , Oxidative Stress , Rats , Signal Transduction , Yeasts/metabolism
3.
Sci Rep ; 7(1): 11135, 2017 09 11.
Article in English | MEDLINE | ID: mdl-28894108

ABSTRACT

The co-existence of males, females and hermaphrodites, a rare mating system known as trioecy, has been considered as an evolutionarily transient state. In nematodes, androdioecy (males/hermaphrodites) as found in Caenorhabditis elegans, is thought to have evolved from dioecy (males/females) through a trioecious intermediate. Thus, trioecious species are good models to understand the steps and requirements for the evolution of new mating systems. Here we describe two new species of nematodes with trioecy, Auanema rhodensis and A. freiburgensis. Along with molecular barcodes, we provide a detailed analysis of the morphology of these species, and document it with drawings and light and SEM micrographs. Based on morphological data, these free-living nematodes were assigned to a new genus, Auanema, together with three other species described previously. Auanema species display convergent evolution in some features with parasitic nematodes with complex life cycles, such as the production of few males after outcrossing and the obligatory development of dauers into self-propagating adults.


Subject(s)
Biological Evolution , Reproduction , Rhabditida/physiology , Animals , Female , Life Cycle Stages , Male , Phylogeny , Rhabditida/anatomy & histology , Rhabditida/classification , Rhabditida Infections/diagnosis , Rhabditida Infections/parasitology
4.
Curr Biol ; 26(22): 3014-3025, 2016 11 21.
Article in English | MEDLINE | ID: mdl-27773573

ABSTRACT

Reactive α-dicarbonyls (α-DCs), like methylglyoxal (MGO), accumulate with age and have been implicated in aging and various age-associated pathologies, such as diabetic complications and neurodegenerative disorders like Alzheimer's and Parkinson's diseases. Evolutionarily conserved glyoxalases are responsible for α-DC detoxification; however, their core biochemical regulation has remained unclear. We have established a Caenorhabditis elegans model, based on an impaired glyoxalase (glod-4/GLO1), to broadly study α-DC-related stress. We show that, in comparison to wild-type (N2, Bristol), glod-4 animals rapidly exhibit several pathogenic phenotypes, including hyperesthesia, neuronal damage, reduced motility, and early mortality. We further demonstrate TRPA-1/TRPA1 as a sensor for α-DCs, conserved between worms and mammals. Moreover, TRPA-1 activates SKN-1/Nrf via calcium-modulated kinase signaling, ultimately regulating the glutathione-dependent (GLO1) and co-factor-independent (DJ1) glyoxalases to detoxify α-DCs. Interestingly, this pathway is in stark contrast to the TRPA-1 activation and the ensuing calcium flux implicated in cold sensation in C. elegans, whereby DAF-16/FOXO gets activated via complementary kinase signaling. Finally, a phenotypic drug screen using C. elegans identified podocarpic acid as a novel activator of TRPA1 that rescues α-DC-induced pathologies in C. elegans and mammalian cells. Our work thus identifies TRPA1 as a bona fide drug target for the amelioration of α-DC stress, which represents a viable option to address aging-related pathologies in diabetes and neurodegenerative diseases.


Subject(s)
Aging , Caenorhabditis elegans Proteins/genetics , Caenorhabditis elegans/physiology , Pyruvaldehyde/metabolism , Signal Transduction , Animals , Caenorhabditis elegans/genetics , Caenorhabditis elegans Proteins/metabolism
6.
Sci Rep ; 5: 17676, 2015 Dec 03.
Article in English | MEDLINE | ID: mdl-26631423

ABSTRACT

Nematodes have diverse reproductive strategies, which make them ideal subjects for comparative studies to address how mating systems evolve. Here we present the sex ratios and mating dynamics of the free-living nematode Rhabditis sp. SB347, in which males, females and hermaphrodites co-exist. The three sexes are produced by both selfing and outcrossing, and females tend to appear early in a mother's progeny. Males prefer mating with females over hermaphrodites, which our results suggest is related to the female-specific production of the sex pheromones ascr#1 and ascr#9. We discuss the parallels between this system and that of parasitic nematodes that exhibit alternation between uniparental and biparental reproduction.


Subject(s)
Biological Evolution , Rhabditoidea/physiology , Sexual Behavior, Animal/physiology , Animals , Disorders of Sex Development , Female , Male , Mating Preference, Animal/physiology , Sex Attractants/metabolism , Sex Ratio
7.
Curr Biol ; 21(18): 1548-51, 2011 Sep 27.
Article in English | MEDLINE | ID: mdl-21906947

ABSTRACT

The mechanisms by which new modes of reproduction evolve remain important unsolved puzzles in evolutionary biology. Nematode worms are ideal for studying the evolution of mating systems because the phylum includes both a large range of reproductive modes and large numbers of evolutionarily independent switches [1, 2]. Rhabditis sp. SB347, a nematode with sexual polymorphism, produces males, females, and hermaphrodites [3]. To understand how the transition between mating systems occurs, we characterized the mechanisms that regulate female versus hermaphrodite fate in Rhabditis sp. SB347. Hermaphrodites develop through an obligatory nonfeeding juvenile stage, the dauer larva. Here we show that by suppressing dauer formation, Rhabditis sp. SB347 develops into females. Conversely, larvae that under optimal growth conditions develop into females can be respecified toward hermaphroditic development if submitted to dauer-inducing conditions. These results are of significance to understanding the evolution of complex mating systems present in parasitic nematodes.


Subject(s)
Hermaphroditic Organisms/physiology , Rhabditoidea/physiology , Sex Determination Processes , Animals , Environment , Female , Hermaphroditic Organisms/growth & development , Life Cycle Stages , Male , Rhabditoidea/growth & development , Sex Characteristics
8.
J Vis Exp ; (47)2011 Jan 11.
Article in English | MEDLINE | ID: mdl-21248706

ABSTRACT

This protocol describes procedures to maintain nematodes in the laboratory and how to mutagenize them using two alternative methods: ethyl methane sulfonate (EMS) and 4, 5', 8-trimethylpsoralen combined with ultraviolet light (TMP/UV). Nematodes are powerful biological systems for genetics studies because of their simple body plan and mating system, which is composed of self-fertilizing hermaphrodites and males that can generate hundreds of progeny per animal. Nematodes are maintained in agar plates containing a lawn of bacteria and can be easily transferred from one plate to another using a pick. EMS is an alkylating agent commonly used to induce point mutations and small deletions, while TMP/UV mainly induces deletions. Depending on the species of nematode being used, concentrations of EMS and TMP will have to be optimized. To isolate recessive mutations of the nematode Pristionchus pacificus, animals of the F2 generation were visually screened for phenotypes. To illustrate these methods, we mutagenized worms and looked for Uncoordinated (Unc), Dumpy (Dpy) and Transformer (Tra) mutants.


Subject(s)
Mutagenesis , Nematoda/growth & development , Nematoda/genetics , Animals , Ethyl Methanesulfonate , Hermaphroditic Organisms , Male , Trioxsalen , Ultraviolet Rays
9.
Nat Commun ; 2: 157, 2011 Jan 18.
Article in English | MEDLINE | ID: mdl-21245838

ABSTRACT

Although Mendel's first law predicts that crosses between XY (or XO) males and XX females should yield equal numbers of males and females, individuals in a wide variety of metazoans transmit their sex chromosomes unequally and produce broods with highly skewed sex ratios. Here, we report two modifications to the cellular programme of spermatogenesis, which, in combination, help to explain why males of the free-living nematode species Rhabditis sp. SB347 sire <5% male progeny. First, the spermatogenesis programme involves a modified meiosis in which chromatids of the unpaired X chromosome separate prematurely, in meiosis I. Second, during anaphase II, cellular components essential for sperm motility are partitioned almost exclusively to the X-bearing sperm. Our studies reveal a novel cellular mechanism for the differential transmission of X-bearing sperm and suggest Rhabditis sp. SB347 as a useful model for studying sex chromosome drive and the evolution of new mating systems.

SELECTION OF CITATIONS
SEARCH DETAIL
...