Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Int J Biol Macromol ; 207: 443-453, 2022 May 15.
Article in English | MEDLINE | ID: mdl-35276294

ABSTRACT

Extracellular matrix (ECM) molecules play an important role in regulating molecular signaling associated with proliferation, migration, differentiation, and tissue repair. The identification of new kinds of ECM mimic biomaterials to recapitulate critical functions of biological systems are important for various applications in tissue engineering and regenerative medicine. The use of human elastin derived materials with controlled biological properties and other functionalities to improve their cell-response was proposed. Herein, we reported genetic encoded synthesis of ELP (elastin-like polypeptide) containing ECM domains like RGD (integrin binding ligand) and YIGSR (laminin-selective receptor binding ligand) to regulate cell behaviour in more complex ways, and also better model natural matrices. Thermal responsiveness of the ELPs and structural conformation were determined to confirm its phase transition behaviour. The fusion ELPs derivatives were analysed for mechanical involvement of growth mechanism, regenerative, and healing processes. The designed fusion ELPs promoted fast and strong attachment of fibroblast cells. The fusion ELP derivatives enhanced the migration of keratinocyte cells which of crucial for wound healing. Together it provides a profound matrix for endothelial cells and significantly enhanced tube formation of HUVEC cells. Thus, strategy of using cell adhesive ELP biopolymer emphasizing the role of bioactive ELPs as next generation skin substitutes for regenerative medicine.


Subject(s)
Elastin , Regenerative Medicine , Elastin/chemistry , Endothelial Cells/metabolism , Humans , Ligands , Peptides/chemistry , Peptides/pharmacology
2.
Int J Biol Macromol ; 108: 1322-1330, 2018 Mar.
Article in English | MEDLINE | ID: mdl-29141194

ABSTRACT

Protein folding is an extremely complex and fast, yet perfectly defined process, involving interplay of many intra and inter-molecular forces. In vitro, these molecular interactions are reversible for many proteins e.g., smaller and monomeric, organized into single domains. However, refolding of larger multi-domain/multimeric proteins is much more complicated, proceeds in a hierarchal way and is often irreversible. In a comparative study on two large, multi-domain and multimeric isozymes, ß-glucosidase I (BGLI) and ß-glucosidase II (BGLII) from Pichia etchellsii, we studied spontaneous and assisted refolding under three denaturing conditions viz. GdnHCl, alkaline pH and heat. During refolding, higher refolding yields were obtained for BGLII in case of pH induced unfolding (13.89%±0.25) than BGLI (6%±0.85) while for GdnHCl induced unfolding, refolding was marginal (BGLI=5%±0.5; BGLII=6%±0.69). Thermal unfolding was irreversible while assisted refolding also showed little structural gain for both proteins. When the apparent free energies of unfolding (ΔGUapp) were calculated from GdnHCl unfolding data, their values were strikingly found to be lower (BGLI ΔGUapp=3.02kcal/mol; BGLII ΔGUapp=2.99kcal/mol) than reported for globular (ΔGU=5-15kcal/mol)/multimeric proteins (ΔGU=23-29kcal/mol) indicating marginal stability results in low refolding.


Subject(s)
N-Glycosyl Hydrolases/chemistry , N-Glycosyl Hydrolases/metabolism , Pichia/enzymology , Pichia/physiology , Protein Unfolding , Temperature , Amino Acid Sequence , Enzyme Stability , Hydrogen-Ion Concentration , Models, Molecular , Protein Domains
3.
PLoS One ; 11(3): e0150288, 2016.
Article in English | MEDLINE | ID: mdl-26981873

ABSTRACT

Peptidyl-prolyl cis-trans isomerases (Ppiases), also known as cyclophilins, are ubiquitously expressed enzymes that assist in protein folding by isomerization of peptide bonds preceding prolyl residues. Mycobacterium tuberculosis (M.tb) is known to possess two Ppiases, PpiA and PpiB. However, our understanding about the biological significance of mycobacterial Ppiases with respect to their pleiotropic roles in responding to stress conditions inside the macrophages is restricted. This study describes chaperone-like activity of mycobacterial Ppiases. We show that recombinant rPpiA and rPpiB can bind to non-native proteins in vitro and can prevent their aggregation. Purified rPpiA and rPpiB exist in oligomeric form as evident from gel filtration chromatography.E. coli cells overexpressing PpiA and PpiB of M.tb could survive thermal stress as compared to plasmid vector control. HEK293T cells transiently expressing M.tb PpiA and PpiB proteins show increased survival as compared to control cells in response to oxidative stress and hypoxic conditions generated after treatment with H2O2 and CoCl2 thereby pointing to their likely role in adaption under host generated oxidative stress and conditions of hypoxia. The chaperone-like function of these M.tuberculosis cyclophilins may possibly function as a stress responder and consequently contribute to virulence.


Subject(s)
Molecular Chaperones/metabolism , Mycobacterium tuberculosis/enzymology , Peptidylprolyl Isomerase/metabolism , Cell Hypoxia , Escherichia coli/metabolism , HEK293 Cells , Humans , Hydrophobic and Hydrophilic Interactions , In Vitro Techniques , Oxidative Stress , Protein Denaturation , Recombinant Proteins/metabolism , Spectrometry, Fluorescence , Surface Properties
4.
mBio ; 7(2): e02259, 2016 Mar 01.
Article in English | MEDLINE | ID: mdl-26933057

ABSTRACT

UNLABELLED: Mycobacterium tuberculosis is a leading cause of death worldwide. The M. tuberculosis TAT (twin-arginine translocation) protein secretion system is present at the cytoplasmic membrane of mycobacteria and is known to transport folded proteins. The TAT secretion system is reported to be essential for many important bacterial processes that include cell wall biosynthesis. The M. tuberculosis secretion and invasion protein RipA has endopeptidase activity and interacts with one of the resuscitation antigens (RpfB) that are expressed during pathogen reactivation. MoxR1, a member of the ATPase family that is associated with various cellular activities, was predicted to interact with RipA based on in silico analyses. A bimolecular fluorescence complementation (BiFC) assay confirmed the interaction of these two proteins in HEK293T cells. The overexpression of RipA in Mycobacterium smegmatis and copurification with MoxR1 further validated their interaction in vivo. Recombinant MoxR1 protein, expressed in Escherichia coli, displays ATP-enhanced chaperone activity. Secretion of recombinant RipA (rRipA) protein into the E. coli culture filtrate was not observed in the absence of RipA-MoxR interaction. Inhibition of this export system in M. tuberculosis, including the key players, will prevent localization of peptidoglycan hydrolase and result in sensitivity to existing ß-lactam antibiotics, opening up new candidates for drug repurposing. IMPORTANCE: The virulence mechanism of mycobacteria is very complex. Broadly, the virulence factors can be classified as secretion factors, cell surface components, enzymes involved in cellular metabolism, and transcriptional regulators. The mycobacteria have evolved several mechanisms to secrete its proteins. Here, we have identified one of the virulence proteins of Mycobacterium tuberculosis, RipA, possessing peptidoglycan hydrolase activities secreted by the TAT secretion pathway. We also identified MoxR1 as a protein-protein interaction partner of RipA and demonstrated chaperone activity of this protein. We show that MoxR1-mediated folding is critical for the secretion of RipA within the TAT system. Inhibition of this export system in M. tuberculosis will prevent localization of peptidoglycan hydrolase and result in sensitivity to existing ß-lactam antibiotics, opening up new candidates for drug repurposing.


Subject(s)
Bacterial Proteins/metabolism , Mycobacterium tuberculosis/enzymology , Mycobacterium tuberculosis/metabolism , Twin-Arginine-Translocation System/metabolism , Virulence Factors/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/isolation & purification , Cell Line , Epithelial Cells/microbiology , Escherichia coli/genetics , Escherichia coli/metabolism , Humans , Mycobacterium smegmatis/genetics , Mycobacterium smegmatis/metabolism , Protein Interaction Mapping
5.
N Biotechnol ; 29(3): 311-20, 2012 Feb 15.
Article in English | MEDLINE | ID: mdl-21704202

ABSTRACT

Purification of biotechnologically important proteins is of vital interest to the biotech industry. ß-Glucosidases, belonging to Family 1 and Family 3 of the glycosylhydrolases, have varied applications as carbohydrate hydrolyzing and synthesizing enzymes. Obtaining high quantities of these enzymes is important for exploring their biosynthetic potential, structural information and catalytic activities. Classical methods for their preparation fail to deliver high yields because of adoption of several/hydroxyapatite chromatography steps. We report here a preparative method for purification of large quantities of two closely related cell bound ß-glucosidases (BGL I and BGL II) from Pichia etchellsii that belong to Family 3 glycosylhydrolases. A combination of ion-exchange and gel filtration chromatography was used to process milligram quantities of protein with recoveries of up to 53%. A simple affinity based separation resulted in resolution of BGL I and BGL II with high recovery and high specific activities of 74IU/mg and 32IU/mg protein respectively. Peptide sequences of BGL II indicated it to be a novel member of Family 3. Methods reported here present a successful strategy for obtaining large quantities of these enzymes.


Subject(s)
Fungal Proteins/isolation & purification , Pichia/enzymology , beta-Glucosidase/isolation & purification , Chromatography, Gel/methods , Chromatography, Ion Exchange/methods , Fungal Proteins/biosynthesis , Fungal Proteins/chemistry , Pichia/growth & development , beta-Glucosidase/biosynthesis , beta-Glucosidase/chemistry
6.
Eur Biophys J ; 40(7): 877-89, 2011 Jul.
Article in English | MEDLINE | ID: mdl-21538058

ABSTRACT

The folding of proteins in the milieu of the cellular environment involves various interactions among the residues of the polypeptide chain and the microenvironment where it resides. These interactions are responsible for stabilizing the protein molecule, and disruption of the same provides information about the stability of the molecule. ß-Glucosidase isozymes, despite having high homology in their primary and tertiary designs, show deviations in their properties such as unfolding, refolding, and stability. In a comparative study on two large cell-wall-bound isozymes, ß-glucosidase I (BGLI) and ß-glucosidase II (BGLII) from a thermo-tolerant yeast, Pichia etchellsii, we have investigated guanidine hydrochloride (GdnHCl)-induced, alkali-induced, and thermal-unfolding transitions using CD and fluorescence spectroscopy and high sensitivity differential scanning calorimetry. Using spectral parameters (MRE 222 nm) to monitor the conformational transitions of the GdnHCl-induced unfolding phenomenon, it was observed that the midpoints of unfolding, apparent C (m), occurred at 1.2 M ± 0.05 and 0.8 M ± 0.03 GdnHCl, respectively, for BGLI and BGLII. The alkali-induced unfolding process indicated that BGLI showed a mid-transition point at pH 11 ± 0.17, while for BGLII it was at pH 10 ± 0.40, further indicating BGLI to be more stable to alkali denaturation than BGLII. In the case of thermal unfolding, the midpoint of transition was observed at 63 ± 0.12°C for BGLI and at 58 ± 0.55°C for BGLII. Analysis by high sensitivity differential scanning calorimeter supported the unfolding data in which BGLI showed higher melting temperature, T (m), (56.07°C ± 0.34) than BGLII (54.02°C ± 0.36). Our results clearly indicate that BGLI is structurally more rigid and stable than BGLII.


Subject(s)
Pichia/enzymology , Pichia/physiology , Protein Unfolding , Temperature , beta-Glucosidase/chemistry , Alkalies/pharmacology , Calorimetry, Differential Scanning , Enzyme Stability/drug effects , Guanidine/pharmacology , Isoenzymes/chemistry , Light , Protein Unfolding/drug effects , Scattering, Radiation , Spectrometry, Fluorescence , Tryptophan
7.
Int J Biochem Cell Biol ; 42(5): 683-92, 2010 May.
Article in English | MEDLINE | ID: mdl-20060926

ABSTRACT

Apo-aconitase, the Fe(4)S(4) cluster free form of TCA cycle enzyme aconitase, binds with GroEL and dissociates itself upon maturation through insertion of the cluster. It is not clearly established as to why apo-protein binds with GroEL. In order to explore the possibility that stability is a factor responsible for the aggregation of apo-form at low ionic strengths and hence it associates with GroEL to avoid the unfavorable event, we carried out the unfolding studies with holo- and apo-aconitase. By probing the unfolding process through the changes in secondary structural element, exposed surface hydrophobicity, and the microenvironment around tryptophan residues, we were able to establish the relevant changes associated with the event. Apparent guanidine hydrochloride concentration required for unfolding of 50% of aconitase indicates that aconitase is destabilized in the absence of the Fe(4)S(4) cluster. The destabilization of the apo-aconitase was further reflected through its three times higher rate of unfolding as compared to the holo-protein. It was also observed that the apo-form has higher surface hydrophobicity than the holo-form. Hence, the lower ground state stability and higher solvent exposed hydrophobic surface of the apo-form makes it aggregation prone. Based on the present observation and earlier findings, we propose that binding of apo-aconitase to GroEL not only rescues it from the aggregation, but also assists in the final stage of maturation by orienting the cluster insertion site of GroEL bound apo-protein. This information sheds new light on the potential role of GroEL in the biosynthetic pathway of the metallo proteins.


Subject(s)
Aconitate Hydratase/chemistry , Aconitate Hydratase/metabolism , Chaperonin 60/metabolism , Fungal Proteins/chemistry , Fungal Proteins/metabolism , Protein Folding , Aconitate Hydratase/genetics , Apoenzymes/chemistry , Apoenzymes/metabolism , Chaperonin 60/genetics , Circular Dichroism , Fungal Proteins/genetics , Guanidine/chemistry , Holoenzymes/chemistry , Holoenzymes/metabolism , Hydrophobic and Hydrophilic Interactions , Iron-Sulfur Proteins/chemistry , Iron-Sulfur Proteins/metabolism , Kinetics , Osmolar Concentration , Peptide Fragments/chemistry , Peptide Fragments/metabolism , Protein Binding , Protein Denaturation , Protein Stability , Protein Structure, Secondary , Recombinant Proteins/chemistry , Recombinant Proteins/metabolism , Spectrometry, Fluorescence , Tryptophan/chemistry , Yeasts/enzymology
8.
J Biosci Bioeng ; 107(2): 102-7, 2009 Feb.
Article in English | MEDLINE | ID: mdl-19217544

ABSTRACT

A major portion of the over expressed yeast mitochondrial aconitase, a large 82 kDa monomeric TCA cycle enzyme, in Escherichia coli led to the formation of inclusion bodies. Bacterial chaperonin GroEL mediated the correct folding of aconitase with the assistance of its co-chaperonin GroES in an ATP dependent manner. Till date the chaperonin assisted folding of aconitase was limited to the shake flask studies with relatively low yields of folded aconitase. No attempt had yet been made to enhance the yield of chaperone mediated folding of aconitase using a bioreactor. The current report deals with the effect of co-expression of GroEL/GroES in the production of soluble, biologically active recombinant aconitase in E. coli by cultivation in a bioreactor at different temperatures under optimized conditions. It revealed that the yield of functional aconitase was enhanced, either in presence of co-expressed GroEL/ES or at low temperature cultivation. However, the outcome from the chaperone assisted folding of aconitase was more pronounced at lower temperature. A 3-fold enhancement in the yield of functional aconitase from the bioreactor based chaperone assisted folding was obtained as compared to the shake flask study. Hence, the present study provides optimized conditions for increasing the yield of functional aconitase by batch cultivation in a bioreactor.


Subject(s)
Aconitate Hydratase/biosynthesis , Bioreactors , Escherichia coli/genetics , Molecular Chaperones/metabolism , Aconitate Hydratase/genetics , Aconitate Hydratase/isolation & purification , Aconitate Hydratase/metabolism , Biomass , Chromatography, Gel , Electrophoresis, Polyacrylamide Gel , Protein Folding , Recombinant Proteins/biosynthesis , Recombinant Proteins/genetics , Recombinant Proteins/isolation & purification , Recombinant Proteins/metabolism
9.
Nucleic Acids Res ; 35(9): 2861-74, 2007.
Article in English | MEDLINE | ID: mdl-17430964

ABSTRACT

Hexameric DnaB type replicative helicases are essential for DNA strand unwinding along with the direction of replication fork movement. These helicases in general contain an amino terminal domain and a carboxy terminal domain separated by a linker region. Due to the lack of crystal structure of a full-length DnaB like helicase, the domain structure and function of these types of helicases are not clear. We have reported recently that Helicobacter pylori DnaB helicase is a replicative helicase in vitro and it can bypass Escherichia coli DnaC activity in vivo. Using biochemical, biophysical and genetic complementation assays, here we show that though the N-terminal region of HpDnaB is required for conformational changes between C6 and C3 rotational symmetry, it is not essential for in vitro helicase activity and in vivo function of the protein. Instead, an extreme carboxy terminal region and an adjacent unique 34 amino acid insertion region were found to be essential for HpDnaB activity suggesting that these regions are important for proper folding and oligomerization of this protein. These results confer great potential in understanding the domain structures of DnaB type helicases and their related function.


Subject(s)
Bacterial Proteins/chemistry , DnaB Helicases/chemistry , Helicobacter pylori/enzymology , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , DnaB Helicases/genetics , DnaB Helicases/metabolism , Genetic Complementation Test , Protein Structure, Tertiary , Sequence Deletion , Structural Homology, Protein
10.
Biochemistry (Mosc) ; 71(11): 1230-7, 2006 Nov.
Article in English | MEDLINE | ID: mdl-17140384

ABSTRACT

Equilibrium denaturation of streptomycin adenylyltransferase (SMATase) has been studied by CD spectroscopy, fluorescence emission spectroscopy, and binding of the hydrophobic dye 1-anilino-8-naphthalene sulfonic acid (ANS). Far-UV CD spectra show retention of 90% native-like secondary structure at 0.5 M guanidine hydrochloride (GdnHCl). The mean residue ellipticities at 222 nm and enzyme activity plotted against GdnHCl concentration showed loss of about 50 and 75% of secondary structure and 35 and 60% of activity at 0.75 and 1.5 M GdnHCl, respectively. At 6 M GdnHCl, there was loss of secondary structure and activity leading to the formation of GdnHCl-induced unfolded state as evidenced by CD and fluorescence spectroscopy as well as by measuring enzymatic activity. The denaturant-mediated decrease in fluorescence intensity and 5 nm red shift of lambda(max) point to gradual unfolding of SMATase when GdnHCl is added up from 0.5 M to a maximum of 6 M. Decreasing of ANS binding and red shift (approximately 5 nm) were observed in this state compared to the native folded state, indicating the partial destruction of surface hydrophobic patches of the protein molecule on denaturation. Disruption of disulfide bonds in the protein resulted in sharp decrease in surface hydrophobicity of the protein, indicating that the surface hydrophobic patches are held by disulfide bonds even in the GdnHCl denatured state. Acrylamide and potassium iodide quenching of the intrinsic tryptophan fluorescence of SMATase showed that the native protein is in folded conformation with majority of the tryptophan residues exposed to the solvent, and about 20% of them are in negatively charged environment.


Subject(s)
Circular Dichroism , Guanidine/pharmacology , Nucleotidyltransferases/chemistry , Nucleotidyltransferases/metabolism , Spectrometry, Fluorescence , Acrylamide/pharmacology , Anilino Naphthalenesulfonates/metabolism , Mycobacterium tuberculosis/enzymology , Potassium Iodide/pharmacology , Protein Binding , Protein Conformation/drug effects , Protein Structure, Secondary , Tryptophan/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...