Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 92
Filter
1.
COPD ; 21(1): 2321379, 2024 12.
Article in English | MEDLINE | ID: mdl-38655897

ABSTRACT

INTRODUCTION: Spirometry is the gold standard for COPD diagnosis and severity determination, but is technique-dependent, nonspecific, and requires administration by a trained healthcare professional. There is a need for a fast, reliable, and precise alternative diagnostic test. This study's aim was to use interpretable machine learning to diagnose COPD and assess severity using 75-second carbon dioxide (CO2) breath records captured with TidalSense's N-TidalTM capnometer. METHOD: For COPD diagnosis, machine learning algorithms were trained and evaluated on 294 COPD (including GOLD stages 1-4) and 705 non-COPD participants. A logistic regression model was also trained to distinguish GOLD 1 from GOLD 4 COPD with the output probability used as an index of severity. RESULTS: The best diagnostic model achieved an AUROC of 0.890, sensitivity of 0.771, specificity of 0.850 and positive predictive value (PPV) of 0.834. Evaluating performance on all test capnograms that were confidently ruled in or out yielded PPV of 0.930 and NPV of 0.890. The severity determination model yielded an AUROC of 0.980, sensitivity of 0.958, specificity of 0.961 and PPV of 0.958 in distinguishing GOLD 1 from GOLD 4. Output probabilities from the severity determination model produced a correlation of 0.71 with percentage predicted FEV1. CONCLUSION: The N-TidalTM device could be used alongside interpretable machine learning as an accurate, point-of-care diagnostic test for COPD, particularly in primary care as a rapid rule-in or rule-out test. N-TidalTM also could be effective in monitoring disease progression, providing a possible alternative to spirometry for disease monitoring.


Subject(s)
Capnography , Machine Learning , Pulmonary Disease, Chronic Obstructive , Severity of Illness Index , Pulmonary Disease, Chronic Obstructive/diagnosis , Pulmonary Disease, Chronic Obstructive/physiopathology , Humans , Middle Aged , Male , Female , Capnography/methods , Aged , Logistic Models , Sensitivity and Specificity , Forced Expiratory Volume , Algorithms , Predictive Value of Tests , Area Under Curve , Case-Control Studies , Spirometry/instrumentation
2.
Lancet Digit Health ; 6(2): e93-e104, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38278619

ABSTRACT

BACKGROUND: Multicentre training could reduce biases in medical artificial intelligence (AI); however, ethical, legal, and technical considerations can constrain the ability of hospitals to share data. Federated learning enables institutions to participate in algorithm development while retaining custody of their data but uptake in hospitals has been limited, possibly as deployment requires specialist software and technical expertise at each site. We previously developed an artificial intelligence-driven screening test for COVID-19 in emergency departments, known as CURIAL-Lab, which uses vital signs and blood tests that are routinely available within 1 h of a patient's arrival. Here we aimed to federate our COVID-19 screening test by developing an easy-to-use embedded system-which we introduce as full-stack federated learning-to train and evaluate machine learning models across four UK hospital groups without centralising patient data. METHODS: We supplied a Raspberry Pi 4 Model B preloaded with our federated learning software pipeline to four National Health Service (NHS) hospital groups in the UK: Oxford University Hospitals NHS Foundation Trust (OUH; through the locally linked research University, University of Oxford), University Hospitals Birmingham NHS Foundation Trust (UHB), Bedfordshire Hospitals NHS Foundation Trust (BH), and Portsmouth Hospitals University NHS Trust (PUH). OUH, PUH, and UHB participated in federated training, training a deep neural network and logistic regressor over 150 rounds to form and calibrate a global model to predict COVID-19 status, using clinical data from patients admitted before the pandemic (COVID-19-negative) and testing positive for COVID-19 during the first wave of the pandemic. We conducted a federated evaluation of the global model for admissions during the second wave of the pandemic at OUH, PUH, and externally at BH. For OUH and PUH, we additionally performed local fine-tuning of the global model using the sites' individual training data, forming a site-tuned model, and evaluated the resultant model for admissions during the second wave of the pandemic. This study included data collected between Dec 1, 2018, and March 1, 2021; the exact date ranges used varied by site. The primary outcome was overall model performance, measured as the area under the receiver operating characteristic curve (AUROC). Removable micro secure digital (microSD) storage was destroyed on study completion. FINDINGS: Clinical data from 130 941 patients (1772 COVID-19-positive), routinely collected across three hospital groups (OUH, PUH, and UHB), were included in federated training. The evaluation step included data from 32 986 patients (3549 COVID-19-positive) attending OUH, PUH, or BH during the second wave of the pandemic. Federated training of a global deep neural network classifier improved upon performance of models trained locally in terms of AUROC by a mean of 27·6% (SD 2·2): AUROC increased from 0·574 (95% CI 0·560-0·589) at OUH and 0·622 (0·608-0·637) at PUH using the locally trained models to 0·872 (0·862-0·882) at OUH and 0·876 (0·865-0·886) at PUH using the federated global model. Performance improvement was smaller for a logistic regression model, with a mean increase in AUROC of 13·9% (0·5%). During federated external evaluation at BH, AUROC for the global deep neural network model was 0·917 (0·893-0·942), with 89·7% sensitivity (83·6-93·6) and 76·6% specificity (73·9-79·1). Site-specific tuning of the global model did not significantly improve performance (change in AUROC <0·01). INTERPRETATION: We developed an embedded system for federated learning, using microcomputing to optimise for ease of deployment. We deployed full-stack federated learning across four UK hospital groups to develop a COVID-19 screening test without centralising patient data. Federation improved model performance, and the resultant global models were generalisable. Full-stack federated learning could enable hospitals to contribute to AI development at low cost and without specialist technical expertise at each site. FUNDING: The Wellcome Trust, University of Oxford Medical and Life Sciences Translational Fund.


Subject(s)
COVID-19 , Secondary Care , Humans , Artificial Intelligence , Privacy , State Medicine , COVID-19/diagnosis , Hospitals , United Kingdom
3.
BMJ Open ; 14(1): e078947, 2024 01 08.
Article in English | MEDLINE | ID: mdl-38191248

ABSTRACT

OBJECTIVES: The Modern Innovative Solutions to Improve Outcomes in Asthma, Breathlessness and Chronic Obstructive Pulmonary Disease (COPD) (MABC) service aimed to enhance disease management for chronic respiratory conditions through specialist multidisciplinary clinics, predominantly in the community. This study assesses the outcomes of these clinics. DESIGN: This study used a prospective, longitudinal, participatory action research approach. SETTING: The study was conducted in primary care practices across Hampshire, UK. PARTICIPANTS: Adults aged 16 years and above with poorly controlled asthma or COPD, as well as those with undifferentiated breathlessness not under specialist care, were included. INTERVENTIONS: Participants received care through the multidisciplinary, specialist-led MABC clinics. PRIMARY AND SECONDARY OUTCOME MEASURES: Primary outcomes included disease activity, quality of life and healthcare utilisation. Secondary outcomes encompassed clinic attendance, diagnostic changes, patient activation, participant and healthcare professional experiences and cost-effectiveness. RESULTS: A total of 441 participants from 11 general practitioner practices were recruited. Ninety-six per cent of participants would recommend MABC clinics. MABC assessments led to diagnosis changes for 64 (17%) participants with asthma and COPD and treatment adjustments for 252 participants (57%). Exacerbations decreased significantly from 236 to 30 after attending the clinics (p<0.005), with a mean reduction of 0.53 exacerbation events per participant. Reductions were also seen in unscheduled and out-of-hours primary care attendance, emergency department visits and hospital admissions (all p<0.005). Cost savings from reduced exacerbations and healthcare utilisation offset increased medication costs and clinic expenses. CONCLUSIONS: Specialist-supported multidisciplinary teams in MABC clinics improved diagnosis accuracy and adherence to guidelines. High patient satisfaction, disease control improvements and reduced exacerbations resulted in decreased unscheduled healthcare use and cost savings. TRIAL REGISTRATION NUMBER: NCT03096509.


Subject(s)
Asthma , General Practitioners , Pulmonary Disease, Chronic Obstructive , Adult , Humans , Prospective Studies , Quality of Life , Asthma/therapy , Pulmonary Disease, Chronic Obstructive/therapy , Ambulatory Care Facilities , Dyspnea
4.
Mol Cell ; 83(22): 4017-4031.e9, 2023 Nov 16.
Article in English | MEDLINE | ID: mdl-37820732

ABSTRACT

The MCM motor of the replicative helicase is loaded onto origin DNA as an inactive double hexamer before replication initiation. Recruitment of activators GINS and Cdc45 upon S-phase transition promotes the assembly of two active CMG helicases. Although work with yeast established the mechanism for origin activation, how CMG is formed in higher eukaryotes is poorly understood. Metazoan Downstream neighbor of Son (DONSON) has recently been shown to deliver GINS to MCM during CMG assembly. What impact this has on the MCM double hexamer is unknown. Here, we used cryoelectron microscopy (cryo-EM) on proteins isolated from replicating Xenopus egg extracts to identify a double CMG complex bridged by a DONSON dimer. We find that tethering elements mediating complex formation are essential for replication. DONSON reconfigures the MCM motors in the double CMG, and primordial dwarfism patients' mutations disrupting DONSON dimerization affect GINS and MCM engagement in human cells and DNA synthesis in Xenopus egg extracts.


Subject(s)
Cell Cycle Proteins , DNA Helicases , Nuclear Proteins , Animals , Humans , Cell Cycle Proteins/chemistry , Cell Cycle Proteins/metabolism , Cryoelectron Microscopy , DNA/genetics , DNA/metabolism , DNA Helicases/metabolism , DNA Replication , Minichromosome Maintenance Proteins/genetics , Minichromosome Maintenance Proteins/metabolism , Nuclear Proteins/chemistry , Nuclear Proteins/metabolism , Saccharomyces cerevisiae/genetics , Enzyme Activation
5.
Front Immunol ; 14: 1192765, 2023.
Article in English | MEDLINE | ID: mdl-37731491

ABSTRACT

Objective: Clinical triage in coronavirus disease 2019 (COVID-19) places a heavy burden on senior clinicians during a pandemic situation. However, risk stratification based on serum biomarker bioprofiling could be implemented by a larger, nonspecialist workforce. Method: Measures of Complement Activation and inflammation in patientS with CoronAvirus DisEase 2019 (CASCADE) patients (n = 72), (clinicaltrials.gov: NCT04453527), classified as mild, moderate, or severe (by support needed to maintain SpO2 > 93%), and healthy controls (HC, n = 20), were bioprofiled using 76 immunological biomarkers and compared using ANOVA. Spearman correlation analysis on biomarker pairs was visualised via heatmaps. Linear Discriminant Analysis (LDA) models were generated to identify patients likely to deteriorate. An X-Gradient-boost (XGB) model trained on CASCADE data to triage patients as mild, moderate, and severe was retrospectively employed to classify COROnavirus Nomacopan Emergency Treatment for covid 19 infected patients with early signs of respiratory distress (CORONET) patients (n = 7) treated with nomacopan. Results: The LDA models distinctly discriminated between deteriorators, nondeteriorators, and HC, with IL-27, IP-10, MDC, ferritin, C5, and sC5b-9 among the key predictor variables during deterioration. C3a and C5 were elevated in all severity classes vs. HC (p < 0.05). sC5b-9 was elevated in the "moderate" and "severe" categories vs. HC (p < 0.001). Heatmap analysis shows a pairwise increase of negatively correlated pairs with IL-27. The XGB model indicated sC5b-9, IL-8, MCP1, and prothrombin F1 and F2 were key discriminators in nomacopan-treated patients (CORONET study). Conclusion: Distinct immunological fingerprints from serum biomarkers exist within different severity classes of COVID-19, and harnessing them using machine learning enabled the development of clinically useful triage and prognostic tools. Complement-mediated lung injury plays a key role in COVID-19 pneumonia, and preliminary results hint at the usefulness of a C5 inhibitor in COVID-19 recovery.


Subject(s)
COVID-19 , Interleukin-27 , Pneumonia , Humans , Retrospective Studies , Machine Learning , Immunosuppressive Agents , Risk Assessment
6.
JMIR Res Protoc ; 12: e44710, 2023 Jul 06.
Article in English | MEDLINE | ID: mdl-37410518

ABSTRACT

BACKGROUND: Asthma is a common lung condition that cannot be cured, but it can usually be effectively managed using available treatments. Despite this, it is widely acknowledged that 70% of patients do not adhere to their asthma treatment. Personalizing treatment by providing the most appropriate interventions based on the patient's psychological or behavioral needs produces successful behavior change. However, health care providers have limited available resources to deliver a patient-centered approach for their psychological or behavioral needs, resulting in a current one-size-fits-all strategy due to the nonfeasible nature of existing surveys. The solution would be to provide health care professionals with a clinically feasible questionnaire that identifies the patient's personal psychological and behavioral factors related to adherence. OBJECTIVE: We aim to apply the capability, opportunity, and motivation model of behavior change (COM-B) questionnaire to detect a patient's perceived psychological and behavioral barriers to adherence. Additionally, we aim to explore the key psychological and behavioral barriers indicated by the COM-B questionnaire and adherence to treatment in patients with confirmed asthma with heterogeneous severity. Exploratory objectives will include a focus on the associations between the COM-B questionnaire responses and asthma phenotype, including clinical, biological, psychosocial, and behavioral components. METHODS: In a single visit, participants visiting Portsmouth Hospital's asthma clinic with a diagnosis of asthma will be asked to complete a 20-minute questionnaire on an iPad about their psychological and behavioral barriers following the theoretical domains framework and capability, opportunity, and motivation model. Participants' data are routinely collected, including demographics, asthma characteristics, asthma control, asthma quality of life, and medication regime, which will be recorded on an electronic data capture form. RESULTS: The study is already underway, and it is anticipated that the results will be available by early 2023. CONCLUSIONS: The COM-B asthma study will investigate an easily accessible theory-based tool (a questionnaire) for identifying psychological and behavioral barriers in patients with asthma who are not adhering to their treatment. This will provide useful information on the behavioral barriers to asthma adherence and whether or not a questionnaire can be used to identify these needs. The highlighted barriers will improve health care professionals' knowledge of this important subject, and participants will benefit from the study by removing their barriers. Overall, this will enable health care professionals to use effective individualized interventions to support improved medication adherence while also recognizing and meeting the psychological needs of patients with asthma. TRIAL REGISTRATION: ClinicalTrials.gov NCT05643924; https://clinicaltrials.gov/ct2/show/NCT05643924. INTERNATIONAL REGISTERED REPORT IDENTIFIER (IRRID): DERR1-10.2196/44710.

7.
Respir Res ; 24(1): 150, 2023 Jun 02.
Article in English | MEDLINE | ID: mdl-37268935

ABSTRACT

BACKGROUND: Although currently most widely used in mechanical ventilation and cardiopulmonary resuscitation, features of the carbon dioxide (CO2) waveform produced through capnometry have been shown to correlate with V/Q mismatch, dead space volume, type of breathing pattern, and small airway obstruction. This study applied feature engineering and machine learning techniques to capnography data collected by the N-Tidal™ device across four clinical studies to build a classifier that could distinguish CO2 recordings (capnograms) of patients with COPD from those without COPD. METHODS: Capnography data from four longitudinal observational studies (CBRS, GBRS, CBRS2 and ABRS) was analysed from 295 patients, generating a total of 88,186 capnograms. CO2 sensor data was processed using TidalSense's regulated cloud platform, performing real-time geometric analysis on CO2 waveforms to generate 82 physiologic features per capnogram. These features were used to train machine learning classifiers to discriminate COPD from 'non-COPD' (a group that included healthy participants and those with other cardiorespiratory conditions); model performance was validated on independent test sets. RESULTS: The best machine learning model (XGBoost) performance provided a class-balanced AUROC of 0.985 ± 0.013, positive predictive value (PPV) of 0.914 ± 0.039 and sensitivity of 0.915 ± 0.066 for a diagnosis of COPD. The waveform features that are most important for driving classification are related to the alpha angle and expiratory plateau regions. These features correlated with spirometry readings, supporting their proposed properties as markers of COPD. CONCLUSION: The N-Tidal™ device can be used to accurately diagnose COPD in near-real-time, lending support to future use in a clinical setting. TRIAL REGISTRATION: Please see NCT03615365, NCT02814253, NCT04504838 and NCT03356288.


Subject(s)
Carbon Dioxide , Pulmonary Disease, Chronic Obstructive , Humans , Pulmonary Disease, Chronic Obstructive/diagnosis , Capnography/methods , Forced Expiratory Volume , Vital Capacity
8.
PLoS One ; 18(3): e0283447, 2023.
Article in English | MEDLINE | ID: mdl-36952555

ABSTRACT

Throughout the COVID-19 pandemic, valuable datasets have been collected on the effects of the virus SARS-CoV-2. In this study, we combined whole genome sequencing data with clinical data (including clinical outcomes, demographics, comorbidity, treatment information) for 929 patient cases seen at a large UK hospital Trust between March 2020 and May 2021. We identified associations between acute physiological status and three measures of disease severity; admission to the intensive care unit (ICU), requirement for intubation, and mortality. Whilst the maximum National Early Warning Score (NEWS2) was moderately associated with severe COVID-19 (A = 0.48), the admission NEWS2 was only weakly associated (A = 0.17), suggesting it is ineffective as an early predictor of severity. Patient outcome was weakly associated with myriad factors linked to acute physiological status and human genetics, including age, sex and pre-existing conditions. Overall, we found no significant links between viral genomics and severe outcomes, but saw evidence that variant subtype may impact relative risk for certain sub-populations. Specific mutations of SARS-CoV-2 appear to have little impact on overall severity risk in these data, suggesting that emerging SARS-CoV-2 variants do not result in more severe patient outcomes. However, our results show that determining a causal relationship between mutations and severe COVID-19 in the viral genome is challenging. Whilst improved understanding of the evolution of SARS-CoV-2 has been achieved through genomics, few studies on how these evolutionary changes impact on clinical outcomes have been seen due to complexities associated with data linkage. By combining viral genomics with patient records in a large acute UK hospital, this study represents a significant resource for understanding risk factors associated with COVID-19 severity. However, further understanding will likely arise from studies of the role of host genetics on disease progression.


Subject(s)
COVID-19 , Humans , COVID-19/epidemiology , SARS-CoV-2/genetics , Pandemics , State Medicine , Trust , Intensive Care Units , Risk Factors , Hospitals , Intubation, Intratracheal , United Kingdom/epidemiology
9.
JMIR Res Protoc ; 12: e41533, 2023 Jan 11.
Article in English | MEDLINE | ID: mdl-36630158

ABSTRACT

BACKGROUND: Measuring vital signs (VS) is an important aspect of clinical care but is time-consuming and requires multiple pieces of equipment and trained staff. Interest in the contactless measurement of VS has grown since the COVID-19 pandemic, including in nonclinical situations. Lifelight is an app being developed as a medical device for the contactless measurement of VS using remote photoplethysmography (rPPG) via the camera on smart devices. The VISION-D (Measurement of Vital Signs by Lifelight Software in Comparison to the Standard of Care-Development) and VISION-V (Validation) studies demonstrated the accuracy of Lifelight compared with standard-of-care measurement of blood pressure, pulse rate, and respiratory rate, supporting the certification of Lifelight as a class I Conformité Européenne (CE) medical device. OBJECTIVE: To support further development of the Lifelight app, the observational VISION Multisite Development (VISION-MD) study is collecting high-quality data from a broad range of patients, including those with VS measurements outside the normal healthy range and patients who are critically ill. METHODS: The study is recruiting adults (aged ≥16 years) who are inpatients (some critically ill), outpatients, and healthy volunteers, aiming to cover a broad range of normal and clinically relevant VS values; there are no exclusion criteria. High-resolution 60-second videos of the face are recorded by the Lifelight app while simultaneously measuring VS using standard-of-care methods (automated sphygmomanometer for blood pressure; finger clip sensor for pulse rate and oxygen saturation; manual counting of respiratory rate). Feedback from patients and nurses who use Lifelight is collected via a questionnaire. Data to estimate the cost-effectiveness of Lifelight compared with standard-of-care VS measurement are also being collected. A new method for rPPG signal processing is currently being developed, based on the identification of small areas of high-quality signals in each individual. Anticipated recruitment is 1950 participants, with the expectation that data from approximately 1700 will be used for software development. Data from 250 participants will be retained to test the performance of Lifelight against predefined performance targets. RESULTS: Recruitment began in May 2021 but was hindered by the restrictions instigated during the COVID-19 pandemic. The development of data processing methodology is in progress. The data for analysis will become available from September 2022, and the algorithms will be refined continuously to improve clinical accuracy. The performance of Lifelight compared with that of the standard-of-care measurement of VS will then be tested. Recruitment will resume if further data are required. The analyses are expected to be completed in early 2023. CONCLUSIONS: This study will support the refinement of data collection and processing toward the development of a robust app that is suitable for routine clinical use. TRIAL REGISTRATION: ClinicalTrials.gov NCT04763746; https://clinicaltrials.gov/ct2/show/NCT04763746. INTERNATIONAL REGISTERED REPORT IDENTIFIER (IRRID): DERR1-10.2196/41533.

10.
J Cardiovasc Comput Tomogr ; 17(1): 52-59, 2023.
Article in English | MEDLINE | ID: mdl-36216700

ABSTRACT

BACKGROUND: FFRCT assesses the functional significance of lesions seen on CTCA, and may be a more efficient approach to chest pain evaluation. The FORECAST randomized trial found no significant difference in costs within the UK National Health Service, but implications for US costs are unknown. The purpose of this study was to compare costs in the FORECAST trial based on US healthcare cost weights, and to evaluate factors affecting costs. METHODS: Patients with stable chest pain were randomized either to the experimental strategy (CTCA with selective FFRCT), or to standard clinical pathways. Pre-randomization, the treating clinician declared the planned initial test. The primary outcome was nine-month cardiovascular care costs. RESULTS: Planned initial tests were CTCA in 912 patients (65%), stress testing in 393 (28%), and invasive angiography in 94 (7%). Mean US costs did not differ overall between the experimental strategy and standard care (cost difference +7% (+$324), CI -12% to +26%, p â€‹= â€‹0.49). Costs were 4% lower with the experimental strategy in the planned invasive angiography stratum (p for interaction â€‹= â€‹0.66). Baseline factors independently associated with costs were older age (+43%), male sex (+55%), diabetes (+37%), hypertension (+61%), hyperlipidemia (+94%), prior angina (+24%), and planned invasive angiography (+160%). Post-randomization cost drivers were coronary revascularization (+348%), invasive angiography (267%), and number of tests (+35%). CONCLUSIONS: Initial evaluation of chest pain using CTCA with FFRCT had similar US costs as standard care pathways. Costs were increased by baseline coronary risk factors and planned invasive angiography, and post-randomization invasive procedures and the number of tests. Registration at ClinicalTrials.gov (NCT03187639).


Subject(s)
Coronary Artery Disease , Fractional Flow Reserve, Myocardial , Humans , Male , Coronary Angiography/methods , State Medicine , Predictive Value of Tests , Angina Pectoris/therapy , Computed Tomography Angiography/methods
11.
NPJ Prim Care Respir Med ; 32(1): 51, 2022 11 11.
Article in English | MEDLINE | ID: mdl-36369507

ABSTRACT

Supporting self-management is key in improving disease control, with technology increasingly utilised. We hypothesised the addition of telehealth support following assessment in an integrated respiratory clinic could reduce unscheduled healthcare visits in patients with asthma and COPD. Following treatment optimisation, exacerbation-prone participants or those with difficulty in self-management were offered telehealth support. This comprised automated twice-weekly telephone calls, with a specialist nurse triaging alerts. We performed a matched cohort study assessing additional benefits of the telehealth service, matching by: confirmed diagnosis, age, sex, FEV1 percent predicted, smoking status and ≥1 exacerbation in the last year. Thirty-four telehealth participants were matched to twenty-nine control participants. The telehealth cohort generated 165 alerts, with 29 participants raising at least one alert; 88 (53.5%) alerts received a call discussing self-management, of which 35 (21%) received definitive advice that may otherwise have required an unscheduled healthcare visit. There was a greater reduction in median exacerbation rate across both telehealth groups at 6 months post-intervention (1 to 0, p < 0.001) but not in control groups (0.5 to 0.0, p = 0.121). Similarly, there was a significant reduction in unscheduled GP visits across the telehealth groups (1.5 to 0.0, p < 0.001), but not the control groups (0.5 to 0.0, p = 0.115). These reductions led to cost-savings across all groups, but greater in the telehealth cohorts. The addition of telehealth support to exacerbation-prone patients with asthma or COPD, following comprehensive assessment and treatment optimisation, proved beneficial in reducing exacerbation frequency and unscheduled healthcare visits and thus leads to significant cost-savings for the NHS.Clinical Trial Registration: ClinicalTrials.gov: NCT03096509.


Subject(s)
Asthma , Pulmonary Disease, Chronic Obstructive , Self-Management , Telemedicine , Humans , Cohort Studies , Asthma/drug therapy , Pulmonary Disease, Chronic Obstructive/therapy
12.
JMIR Form Res ; 6(11): e36340, 2022 Nov 14.
Article in English | MEDLINE | ID: mdl-36374541

ABSTRACT

BACKGROUND: The detection of early changes in vital signs (VSs) enables timely intervention; however, the measurement of VSs requires hands-on technical expertise and is often time-consuming. The contactless measurement of VSs is beneficial to prevent infection, such as during the COVID-19 pandemic. Lifelight is a novel software being developed to measure VSs by remote photoplethysmography based on video captures of the face via the integral camera on mobile phones and tablets. We report two early studies in the development of Lifelight. OBJECTIVE: The objective of the Vital Sign Comparison Between Lifelight and Standard of Care: Development (VISION-D) study (NCT04763746) was to measure respiratory rate (RR), pulse rate (PR), and blood pressure (BP) simultaneously by using the current standard of care manual methods and the Lifelight software to iteratively refine the software algorithms. The objective of the Vital Sign Comparison Between Lifelight and Standard of Care: Validation (VISION-V) study (NCT03998098) was to validate the use of Lifelight software to accurately measure VSs. METHODS: BP, PR, and RR were measured simultaneously using Lifelight, a sphygmomanometer (BP and PR), and the manual counting of RR. Accuracy performance targets for each VS were defined from a systematic literature review of the performance of state-of-the-art VSs technologies. RESULTS: The VISION-D data set (17,233 measurements from 8585 participants) met the accuracy targets for RR (mean error 0.3, SD 3.6 vs target mean error 2.3, SD 5.0; n=7462), PR (mean error 0.3, SD 4.0 vs mean error 2.2, SD 9.2; n=10,214), and diastolic BP (mean error -0.4, SD 8.5 vs mean error 5.5, SD 8.9; n=8951); for systolic BP, the mean error target was met but not the SD (mean error 3.5, SD 16.8 vs mean error 6.7, SD 15.3; n=9233). Fitzpatrick skin type did not affect accuracy. The VISION-V data set (679 measurements from 127 participants) met all the standards: mean error -0.1, SD 3.4 for RR; mean error 1.4, SD 3.8 for PR; mean error 2.8, SD 14.5 for systolic BP; and mean error -0.3, SD 7.0 for diastolic BP. CONCLUSIONS: At this early stage in development, Lifelight demonstrates sufficient accuracy in the measurement of VSs to support certification for a Level 1 Conformité Européenne mark. As the use of Lifelight does not require specific training or equipment, the software is potentially useful for the contactless measurement of VSs by nonclinical staff in residential and home care settings. Work is continuing to enhance data collection and processing to achieve the robustness and accuracy required for routine clinical use. INTERNATIONAL REGISTERED REPORT IDENTIFIER (IRRID): RR2-10.2196/14326.

13.
Front Cell Infect Microbiol ; 12: 1066390, 2022.
Article in English | MEDLINE | ID: mdl-36741977

ABSTRACT

Introduction: Throughout the global COVID-19 pandemic, nosocomial transmission has represented a major concern for healthcare settings and has accounted for many infections diagnosed within hospitals. As restrictions ease and novel variants continue to spread, it is important to uncover the specific pathways by which nosocomial outbreaks occur to understand the most suitable transmission control strategies for the future. Methods: In this investigation, SARS-CoV-2 genome sequences obtained from 694 healthcare workers and 1,181 patients were analyzed at a large acute NHS hospital in the UK between September 2020 and May 2021. These viral genomic data were combined with epidemiological data to uncover transmission routes within the hospital. We also investigated the effects of the introduction of the highly transmissible variant of concern (VOC), Alpha, over this period, as well as the effects of the national vaccination program on SARS-CoV-2 infection in the hospital. Results: Our results show that infections of all variants within the hospital increased as community prevalence of Alpha increased, resulting in several outbreaks and super-spreader events. Nosocomial infections were enriched amongst older and more vulnerable patients more likely to be in hospital for longer periods but had no impact on disease severity. Infections appeared to be transmitted most regularly from patient to patient and from patients to HCWs. In contrast, infections from HCWs to patients appeared rare, highlighting the benefits of PPE in infection control. The introduction of the vaccine at this time also reduced infections amongst HCWs by over four-times. Discussion: These analyses have highlighted the importance of control measures such as regular testing, rapid lateral flow testing alongside polymerase chain reaction (PCR) testing, isolation of positive patients in the emergency department (where possible), and physical distancing of patient beds on hospital wards to minimize nosocomial transmission of infectious diseases such as COVID-19.


Subject(s)
COVID-19 , Cross Infection , Humans , COVID-19/epidemiology , SARS-CoV-2/genetics , Cross Infection/epidemiology , Pandemics/prevention & control , Genomics , United Kingdom/epidemiology
14.
JMIR Res Protoc ; 10(8): e26350, 2021 Aug 27.
Article in English | MEDLINE | ID: mdl-34448728

ABSTRACT

BACKGROUND: It is a recurring theme in clinical practice that patients using inhaled medications via an inhaler do not use their device to a standard that allows for optimum therapeutic effect, and some studies have shown that up to 90% of people do not use their inhalers properly. Observation and correction of the inhaler technique by health care professionals is advised by both national and international guidelines and should be performed at every opportunity to ensure that the optimum inhaler technique is achieved by the user. This study will provide a greater understanding of the most frequent technique errors made by people using 13 different inhaler types. OBJECTIVE: This study aims to identify and compare inhaler technique errors and their prevalence in adults, using device-specific checklists in accordance with manufacturers' guidelines, for 13 specific inhaler types across all lung conditions and to correlate these errors with possible determinants of poor technique. It also aims to assess the error frequency at each step in the device-specific questionnaires and compare the error rates among device types. METHODS: In a single visit, participants using an inhaler included in the inclusion criteria will have their inhaler technique observed using an identical placebo device, which will be recorded using device-specific checklists, and technique-optimized, or switched to a suitable inhaler. RESULTS: The study is already underway, and it is anticipated that the results will be available by 2022. CONCLUSIONS: The SCORES (Study to Investigate the Prevalence of Device-Specific Errors in Inhaler Technique in Adults With Airway Disease) study will ascertain the prevalence of device-specific inhaler technique errors at each step in the device-specific checklists, compare error rates among 13 device types, and correlate these errors with possible determinants of poor technique. Future work will involve the clarification and classification of these errors into critical and noncritical categories. TRIAL REGISTRATION: ClinicalTrials.gov NCT04262271; https://clinicaltrials.gov/ct2/show/NCT04262271. INTERNATIONAL REGISTERED REPORT IDENTIFIER (IRRID): DERR1-10.2196/26350.

15.
Eur Heart J ; 42(37): 3844-3852, 2021 10 01.
Article in English | MEDLINE | ID: mdl-34269376

ABSTRACT

AIMS: Fractional flow reserve (FFRCT) using computed tomography coronary angiography (CTCA) determines both the presence of coronary artery disease and vessel-specific ischaemia. We tested whether an evaluation strategy based on FFRCT would improve economic and clinical outcomes compared with standard care. METHODS AND RESULTS: Overall, 1400 patients with stable chest pain in 11 centres were randomized to initial testing with CTCA with selective FFRCT (experimental group) or standard clinical care pathways (standard group). The primary endpoint was total cardiac costs at 9 months. Secondary endpoints were angina status, quality of life, major adverse cardiac and cerebrovascular events, and use of invasive coronary angiography. Randomized groups were similar at baseline. Most patients had an initial CTCA: 439 (63%) in the standard group vs. 674 (96%) in the experimental group, 254 of whom (38%) underwent FFRCT. Mean total cardiac costs were higher by £114 (+8%) in the experimental group, with a 95% confidence interval from -£112 (-8%) to +£337 (+23%), though the difference was not significant (P = 0.10). Major adverse cardiac and cerebrovascular events did not differ significantly (10.2% in the experimental group vs. 10.6% in the standard group) and angina and quality of life improved to a similar degree over follow-up in both randomized groups. Invasive angiography was reduced significantly in the experimental group (19% vs. 25%, P = 0.01). CONCLUSION: A strategy of CTCA with selective FFRCT in patients with stable angina did not differ significantly from standard clinical care pathways in cost or clinical outcomes, but did reduce the use of invasive coronary angiography.


Subject(s)
Angina, Stable , Coronary Artery Disease , Coronary Stenosis , Fractional Flow Reserve, Myocardial , Angina, Stable/diagnostic imaging , Angina, Stable/therapy , Computed Tomography Angiography , Coronary Angiography , Coronary Artery Disease/diagnostic imaging , Coronary Vessels , Humans , Predictive Value of Tests , Quality of Life
16.
JMIR Res Protoc ; 10(7): e23831, 2021 Jul 09.
Article in English | MEDLINE | ID: mdl-34255725

ABSTRACT

BACKGROUND: More than 7% of the world's population is living with a chronic respiratory condition. In the United Kingdom, lung disease affects approximately 1 in 5 people, resulting in over 700,000 hospital admissions each year. People with respiratory conditions have several symptoms and can require multiple health care visits and investigations before a diagnosis is made. The tests available can be difficult to perform, especially if a person is symptomatic, leading to poor quality results. A new, easy-to-perform, point-of-care test that can be performed in any health care setting and that can differentiate between various respiratory conditions would have a significant, beneficial impact on the ability to diagnose respiratory diseases. OBJECTIVE: The objective of this study is to use a new handheld device (Inflammacheck) in different respiratory conditions to measure the exhaled breath condensate hydrogen peroxide (EBC H2O2) and compare these results with those of healthy controls and with each other. This study also aims to determine whether the device can measure other parameters, including breath humidity, breath temperature, breath flow dynamics, and end tidal carbon dioxide. METHODS: We will perform a single-visit, cross-sectional observational study of EBC H2O2 levels, as measured by Inflammacheck, in people with respiratory disease and volunteers with no known lung disease. Participants with a confirmed diagnosis of asthma, chronic obstructive pulmonary disease, lung cancer, bronchiectasis, pneumonia, breathing pattern disorder, and interstitial lung disease as well as volunteers with no history of lung disease will be asked to breathe into the Inflammacheck device to record their breath sample. RESULTS: The results from this study will be available in 2022, in anticipation of COVID-19-related delays. CONCLUSIONS: This study will investigate the EBC H2O2, as well as other exhaled breath parameters, for use as a future diagnostic tool.

19.
JMIR Res Protoc ; 10(1): e14326, 2021 Jan 28.
Article in English | MEDLINE | ID: mdl-33507157

ABSTRACT

BACKGROUND: Vital sign measurements are an integral component of clinical care, but current challenges with the accuracy and timeliness of patient observations can impact appropriate clinical decision making. Advanced technologies using techniques such as photoplethysmography have the potential to automate noncontact physiological monitoring and recording, improving the quality and accessibility of this essential clinical information. OBJECTIVE: In this study, we aim to develop the algorithm used in the Lifelight software application and improve the accuracy of its estimated heart rate, respiratory rate, oxygen saturation, and blood pressure measurements. METHODS: This preliminary study will compare measurements predicted by the Lifelight software with standard of care measurements for an estimated population sample of 2000 inpatients, outpatients, and healthy people attending a large acute hospital. Both training datasets and validation datasets will be analyzed to assess the degree of correspondence between the vital sign measurements predicted by the Lifelight software and the direct physiological measurements taken using standard of care methods. Subgroup analyses will explore how the performance of the algorithm varies with particular patient characteristics, including age, sex, health condition, and medication. RESULTS: Recruitment of participants to this study began in July 2018, and data collection will continue for a planned study period of 12 months. CONCLUSIONS: Digital health technology is a rapidly evolving area for health and social care. Following this initial exploratory study to develop and refine the Lifelight software application, subsequent work will evaluate its performance across a range of health characteristics, and extended validation trials will support its pathway to registration as a medical device. Innovations in health technology such as this may provide valuable opportunities for increasing the efficiency and accessibility of vital sign measurements and improve health care services on a large scale across multiple health and care settings. INTERNATIONAL REGISTERED REPORT IDENTIFIER (IRRID): DERR1-10.2196/14326.

20.
BMJ Open Respir Res ; 8(1)2021 01.
Article in English | MEDLINE | ID: mdl-33414260

ABSTRACT

INTRODUCTION: The prognosis of malignant pleural mesothelioma (MPM) is poor, with a median survival of 8-12 months. The ability to predict prognosis in MPM would help clinicians to make informed decisions regarding treatment and identify appropriate research opportunities for patients. The aims of this study were to examine associations between clinical and pathological information gathered during routine care, and prognosis of patients with MPM, and to develop a 6-month mortality risk prediction model. METHODS: A retrospective cohort study of patients diagnosed with MPM at Queen Alexandra Hospital, Portsmouth, UK between December 2009 and September 2013. Multivariate analysis was performed on routinely available histological, clinical and laboratory data to assess the association between different factors and 6-month survival, with significant associations used to create a model to predict the risk of death within 6 months of diagnosis with MPM. RESULTS: 100 patients were included in the analysis. Variables significantly associated with patient survival in multivariate analysis were age (HR 1.31, 95% CI 1.09 to 1.56), smoking status (current smoker HR 3.42, 95% CI 1.11 to 4.20), chest pain (HR 2.14, 95% CI 1.23 to 3.72), weight loss (HR 2.13, 95% CI 1.18 to 3.72), platelet count (HR 1.05, 95% CI 1.00 to 1.10), urea (HR 2.73, 95% CI 1.31 to 5.69) and adjusted calcium (HR 1.47, 95% CI 1.10 to 1.94). The resulting risk model had a c-statistic value of 0.76. A Hosmer-Lemeshow test confirmed good calibration of the model against the original dataset. CONCLUSION: Risk of death at 6 months in patients with a confirmed diagnosis of MPM can be predicted using variables readily available in clinical practice. The risk prediction model we have developed may be used to influence treatment decisions in patients with MPM. Further validation of the model requires evaluation of its performance on a separate dataset.


Subject(s)
Lung Neoplasms , Mesothelioma, Malignant , Mesothelioma , Pleural Neoplasms , Humans , Laboratories , Lung Neoplasms/diagnosis , Mesothelioma/diagnosis , Pleural Neoplasms/diagnosis , Retrospective Studies
SELECTION OF CITATIONS
SEARCH DETAIL
...