Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Biochem J ; 481(14): 923-944, 2024 Jul 17.
Article in English | MEDLINE | ID: mdl-38985307

ABSTRACT

Maintenance of genome stability is of paramount importance for the survival of an organism. However, genomic integrity is constantly being challenged by various endogenous and exogenous processes that damage DNA. Therefore, cells are heavily reliant on DNA repair pathways that have evolved to deal with every type of genotoxic insult that threatens to compromise genome stability. Notably, inherited mutations in genes encoding proteins involved in these protective pathways trigger the onset of disease that is driven by chromosome instability e.g. neurodevelopmental abnormalities, neurodegeneration, premature ageing, immunodeficiency and cancer development. The ability of cells to regulate the recruitment of specific DNA repair proteins to sites of DNA damage is extremely complex but is primarily mediated by protein post-translational modifications (PTMs). Ubiquitylation is one such PTM, which controls genome stability by regulating protein localisation, protein turnover, protein-protein interactions and intra-cellular signalling. Over the past two decades, numerous ubiquitin (Ub) E3 ligases have been identified to play a crucial role not only in the initiation of DNA replication and DNA damage repair but also in the efficient termination of these processes. In this review, we discuss our current understanding of how different Ub E3 ligases (RNF168, TRAIP, HUWE1, TRIP12, FANCL, BRCA1, RFWD3) function to regulate DNA repair and replication and the pathological consequences arising from inheriting deleterious mutations that compromise the Ub-dependent DNA damage response.


Subject(s)
DNA Damage , DNA Repair , DNA Replication , Ubiquitin-Protein Ligases , Humans , Ubiquitin-Protein Ligases/metabolism , Ubiquitin-Protein Ligases/genetics , Ubiquitination , Neoplasms/genetics , Neoplasms/metabolism , Genomic Instability , Protein Processing, Post-Translational , Animals , Tumor Suppressor Proteins/genetics , Tumor Suppressor Proteins/metabolism
2.
Mol Cell ; 83(22): 4017-4031.e9, 2023 Nov 16.
Article in English | MEDLINE | ID: mdl-37820732

ABSTRACT

The MCM motor of the replicative helicase is loaded onto origin DNA as an inactive double hexamer before replication initiation. Recruitment of activators GINS and Cdc45 upon S-phase transition promotes the assembly of two active CMG helicases. Although work with yeast established the mechanism for origin activation, how CMG is formed in higher eukaryotes is poorly understood. Metazoan Downstream neighbor of Son (DONSON) has recently been shown to deliver GINS to MCM during CMG assembly. What impact this has on the MCM double hexamer is unknown. Here, we used cryoelectron microscopy (cryo-EM) on proteins isolated from replicating Xenopus egg extracts to identify a double CMG complex bridged by a DONSON dimer. We find that tethering elements mediating complex formation are essential for replication. DONSON reconfigures the MCM motors in the double CMG, and primordial dwarfism patients' mutations disrupting DONSON dimerization affect GINS and MCM engagement in human cells and DNA synthesis in Xenopus egg extracts.


Subject(s)
Cell Cycle Proteins , DNA Helicases , Nuclear Proteins , Animals , Humans , Cell Cycle Proteins/chemistry , Cell Cycle Proteins/metabolism , Cryoelectron Microscopy , DNA/genetics , DNA/metabolism , DNA Helicases/metabolism , DNA Replication , Minichromosome Maintenance Proteins/genetics , Minichromosome Maintenance Proteins/metabolism , Nuclear Proteins/chemistry , Nuclear Proteins/metabolism , Saccharomyces cerevisiae/genetics , Enzyme Activation
3.
J Biomed Nanotechnol ; 12(5): 1101-14, 2016 May.
Article in English | MEDLINE | ID: mdl-27305829

ABSTRACT

Due to their abundant ubiquitous presence, rapid uptake and increased requirement in neoplastic tissue, the delivery of the iron carrier macromolecules transferrin (Tf) and lactoferrin (Lf) into mammalian cells is the subject of intense interest for delivery of drugs and other target molecules into cells. Utilizing exosomes obtained from cells of diverse origin we confirmed the presence of the multifunctional protein glyceraldehyde-3-phosphate dehydrogenase (GAPDH) which has recently been characterized as a Tf and Lf receptor. Using a combination of biochemical, biophysical and imaging based methodologies, we demonstrate that GAPDH present in exosomes captures Tf and Lf and subsequently effectively delivers these proteins into mammalian cells. Exosome vesicles prepared had a size of 51.2 ± 23.7 nm. They were found to be stable in suspension with a zeta potential (ζ-potential) of -28.16 ± 1.15 mV. Loading of Tf/Lf did not significantly affect ζ-potential of the exosomes. The carrier protein loaded exosomes were able to enhance the delivery of Tf/Lf by 2 to 3 fold in a diverse panel of cell types. Ninety percent of the internalized cargo via this route was found to be specifically delivered into late endosome and lysosomes. We also found exosomes to be tunable nano vehicles for cargo delivery by varying the amount of GAPDH associated with exosome. The current study opens a new avenue of research for efficient delivery of these vital iron carriers into cells employing exosomes as a nano delivery vehicle.


Subject(s)
Cell Compartmentation , Drug Carriers/chemistry , Exosomes/chemistry , Lactoferrin/administration & dosage , Macromolecular Substances/chemistry , Nanoparticles/chemistry , Transferrin/administration & dosage , Animals , CHO Cells , Cricetinae , Cricetulus , Drug Delivery Systems , Endosomes/metabolism , Exosomes/ultrastructure , Glyceraldehyde-3-Phosphate Dehydrogenases/metabolism , Hep G2 Cells , Humans , Iron/metabolism , Rabbits
4.
Sci Rep ; 5: 18465, 2015 Dec 17.
Article in English | MEDLINE | ID: mdl-26672975

ABSTRACT

Lactoferrin is a crucial nutritionally important pleiotropic molecule and iron an essential trace metal for all life. The current paradigm is that living organisms have evolved specific membrane anchored receptors along with iron carrier molecules for regulated absorption, transport, storage and mobilization of these vital nutrients. We present evidence for the existence of non-canonical pathway whereby cells actively forage these vital resources from beyond their physical boundaries, by secreting the multifunctional housekeeping enzyme Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) into the extracellular milieu. This effect's an autocrine/paracrine acquisition of target ligand into the cell. Internalization by this route is extensively favoured even by cells that express surface receptors for lactoferrin and involves urokinase plasminogen activator receptor (uPAR). We also demonstrate the operation of this phenomenon during inflammation, as an arm of the innate immune response where lactoferrin denies iron to invading microorganisms by chelating it and then itself being sequestered into surrounding host cells by GAPDH.


Subject(s)
Extracellular Space/metabolism , Glyceraldehyde-3-Phosphate Dehydrogenases/metabolism , Iron/metabolism , Lactoferrin/metabolism , Animals , Biological Transport , Cell Line , Cell Line, Tumor , Cells, Cultured , Duodenum/metabolism , Endosomes/metabolism , Endosomes/ultrastructure , Extracellular Space/enzymology , Female , Flow Cytometry , Fluorescence Resonance Energy Transfer , Humans , Mice, Inbred BALB C , Microscopy, Fluorescence , Microscopy, Immunoelectron , Receptors, Urokinase Plasminogen Activator/metabolism
5.
J Cell Sci ; 127(Pt 19): 4279-91, 2014 Oct 01.
Article in English | MEDLINE | ID: mdl-25074810

ABSTRACT

Iron (Fe(2+), Fe(3+)) homeostasis is a tightly regulated process, involving precise control of iron influx and egress from cells. Although the mechanisms of its import into cells by iron carrier molecules are well characterized, iron export remains poorly understood. The current paradigm envisages unique functions associated with specialized macromolecules for its cellular import (transferrin receptors) or export (ferroportin, also known as SLC40A1). Previous studies have revealed that iron-depleted cells recruit glyceraldehyde-3-phosphate dehydrogenase (GAPDH), a multitasking, 'moonlighting' protein, to their surface for internalization of the iron carrier holotransferrin. Here, we report that under the converse condition of intracellular iron excess, cells switch the isoform of GAPDH on their surface to one that now recruits iron-free apotransferrin in close association with ferroportin to facilitate the efflux of iron. Increased expression of surface GAPDH correlated with increased apotransferrin binding and enhanced iron export from cells, a capability lost in GAPDH-knockdown cells. These findings were confirmed in vivo utilizing a rodent model of iron overload. Besides identifying for the first time an apotransferrin receptor, our work uncovers the two-way switching of multifunctional molecules to manage cellular micronutrient requirements.


Subject(s)
Apoproteins/metabolism , Ferric Compounds/metabolism , Ferrous Compounds/metabolism , Glyceraldehyde-3-Phosphate Dehydrogenases/metabolism , Transferrin/metabolism , Animals , Humans , Rabbits , Rats , Rats, Sprague-Dawley
SELECTION OF CITATIONS
SEARCH DETAIL
...