Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Lung India ; 41(2): 84-92, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38700400

ABSTRACT

BACKGROUND: Mycobacterium w (Mw), an immunomodulator, resulted in better clinical status in severe coronavirus infectious disease 19 (COVID-19) but no survival benefit in a previous study. Herein, we investigate whether Mw could improve clinical outcomes and survival in COVID-19. MATERIALS AND METHODS: In a multicentric, randomized, double-blind, parallel-group, placebo-controlled trial, we randomized hospitalized subjects with severe COVID-19 to receive either 0.3 mL/day of Mw intradermally or a matching placebo for three consecutive days. The primary outcome was 28-day mortality. The co-primary outcome was the distribution of clinical status assessed on a seven-point ordinal scale ranging from discharged (category 1) to death (category 7) on study days 14, 21, and 28. The key secondary outcomes were the change in sequential organ failure assessment (SOFA) score on days 7 and 14 compared to the baseline, treatment-emergent adverse events, and others. RESULTS: We included 273 subjects (136 Mw, 137 placebo). The use of Mw did not improve 28-day survival (Mw vs. placebo, 18 [13.2%] vs. 12 [8.8%], P = 0.259) or the clinical status on days 14 (odds ratio [OR], 1.33; 95% confidence intervals [CI], 0.79-2.3), 21 (OR, 1.49; 95% CI, 0.83-2.7) or 28 (OR, 1.49; 95% CI, 0.79-2.8) between the two study arms. There was no difference in the delta SOFA score or other secondary outcomes between the two groups. We observed higher injection site reactions with Mw. CONCLUSION: Mw did not reduce 28-day mortality or improve clinical status on days 14, 21 and 28 compared to placebo in patients with severe COVID-19. [Trial identifier: CTRI/2020/04/024846].

2.
Front Oncol ; 14: 1269211, 2024.
Article in English | MEDLINE | ID: mdl-38469233

ABSTRACT

Purpose: Isolating circulating tumour cells (CTCs) from the blood is challenging due to their low abundance and heterogeneity. Limitations of conventional CTC detection methods highlight the need for improved strategies to detect and isolate CTCs. Currently, the Food and Drug Administration (FDA)-approved CellSearch™ and other RUO techniques are not available in India. Therefore, we wanted to develop a flexible CTC detection/isolation technique that addresses the limitation(s) of currently available techniques and is suitable for various downstream applications. Methods: We developed a novel, efficient, user-friendly CTC isolation strategy combining density gradient centrifugation and immuno-magnetic hematogenous cell depletion with fluorescence-activated cell sorting (FACS)-based positive selection using multiple CTC-specific cell-surface markers. For FACS, a stringent gating strategy was optimised to exclude debris and doublets by side scatter/forward scatter (SSC/FSC) discriminator, remove dead cells by 4',6-diamidino-2-phenylindole (DAPI) staining, and eliminate non-specific fluorescence using a "dump" channel. APC-labelled anti-CD45mAB was used to gate remaining hematogenous cells, while multiple epithelial markers (EpCAM, EGFR, and Pan-Cytokeratin) and an epithelial-mesenchymal transition (EMT) marker (Vimentin) labelled with fluorescein isothiocyanate (FITC) were used to sort cancer cells. The technique was initially developed by spiking Cal 27 cancer cells into the blood of healthy donors and then validated in 95 biopsy-proven oral squamous cell carcinoma (OSCC) patients. CTCs isolated from patients were reconfirmed by Giemsa staining, immuno-staining, and whole transcriptome amplification (WTA), followed by qRT-PCR. In vitro culture and RNA sequencing (RNA-Seq) were also performed to confirm their suitability for various downstream applications. Results: The mean detection efficiency for the Cal 27 tongue cancer cells spiked in the whole blood of healthy donors was 32.82% ± 12.71%. While ~75% of our patients (71/95) had detectable CTCs, the CTC positivity was independent of the TNM staging. The isolated potential cancer cells from OSCC patients were heterogeneous in size. They expressed different CTC-specific markers in various combinations as identified by qRT-PCR after WTA in different patients. Isolated CTCs were also found to be suitable for downstream applications like short-term CTC culture and RNA-Seq. Conclusion: We developed a sensitive, specific, flexible, and affordable CTC detection/isolation technique, which is scalable to larger patient cohorts, provides a snapshot of CTC heterogeneity, isolates live CTCs ready for downstream molecular analysis, and, most importantly, is suitable for developing countries.

4.
Arch Oral Biol ; 137: 105395, 2022 May.
Article in English | MEDLINE | ID: mdl-35299001

ABSTRACT

OBJECTIVES: Genomic instability in cancers is often associated with poor disease outcomes. In Head and Neck Squamous Cell Carcinoma (HNSCC), saliva being the contact fluid contains cancers cells shed from the primary tumour. This study detected genomic instability from cancer cells shed in saliva and correlated the same with clinical implications. DESIGN: Genomic instability in HNSCC patients (n = 81) was analysed and compared with control subjects (n = 30). Alu sequences were amplified from the DNA of the cells shed in saliva and from the blood (Germline DNA) using Alu-PCR. Band variations between amplified products of salivary cells' DNA and germline DNA were compared. 'Instability Score' was calculated by counting the band variation(s). The 'Instability Score' was further used as a measure of genomic instability. RESULTS: Higher instability was detected in patients as compared to the controls (p < 0.0001). After treatment, there was a significant decrease (p < 0.0001) in the Instability score and patients with higher instability scores responded better to radiotherapy. The patient group consuming both tobacco and alcohol had a higher instability score in comparison to the tobacco group (p = 0.0056). Also, Instability scores are inversely correlated with nodal metastasis (p = 0.0075). A high Instability score before treatment resulted in a better prognosis in HNSCC patients (HR: 1.8, 95%CI: 1.024-3.164, p = 0.0306). CONCLUSION: Our data suggest that genomic instability estimated from the tumour cells shed in the saliva of HNSCC patients by amplifying Alu sequence (Alu-PCR) is associated with radiotherapy response.


Subject(s)
Carcinoma, Squamous Cell , Head and Neck Neoplasms , Carcinoma, Squamous Cell/genetics , Carcinoma, Squamous Cell/pathology , Genomic Instability , Head and Neck Neoplasms/genetics , Humans , Saliva , Squamous Cell Carcinoma of Head and Neck/genetics
5.
Crit Rev Microbiol ; 48(6): 770-783, 2022 Nov.
Article in English | MEDLINE | ID: mdl-35164642

ABSTRACT

Understanding the host-microbiome interactions has emerged as an essential factor in improving human health and disease. Recent advances in understanding the intimate relationship of microbes with the host have uncovered various previously unknown underlying causes of disease development, progression, and treatment failure. The dynamic behaviour of the microbiome confers the heterogeneity in treatment response by modulating the immune response and inflammation in various diseases, including cancer. The growing insights into the microbial modulation of cancer through immunoregulation, xenometabolism, and increase in toxicity open a new era of personalised medicine. In the current review, we discuss the essential roles played by the microbiome in modulating the efficacy and toxicity of anticancer therapies (immunotherapy, chemotherapy, and radiotherapy). We also outline the current state of personalised medicine in the context of cancer and microbiome modulation. The knowledge about the role of cancer-microbiome communication will lead to designing other precise microbial modulation strategies for cancer treatment through enhanced efficacy and decreased toxicity.


Subject(s)
Microbiota , Neoplasms , Humans , Neoplasms/drug therapy , Precision Medicine , Immunotherapy
6.
J Clin Pathol ; 75(5): 289-291, 2022 May.
Article in English | MEDLINE | ID: mdl-34969781

ABSTRACT

Cornulin (CRNN) gene encodes a 495 amino acid long protein and is located on chromosome 1q21.3. Primarily, it functions as the marker of differentiation. Initially, it was found to be specific for the squamous cells of oesophagus. However, later on, several studies have revealed the presence of Cornulin downregulation in various epithelial squamous cell carcinomas of the head and neck, oesophagus and cervix and clinically associated it with worsening of cancer and the poor prognosis. Cornulin levels also showed dysregulation in other diseases such as Eczema and Psoriasis. Besides the differentiation marker, it was identified to be involved in the stress response. The studies, in psoriasis and oesophageal squamous cell carcinoma, has elucidated that the dysregulation in the Cornulin is associated with the cell cycle events such as G1/S transition. However, the actual function of Cornulin is still yet to be explored in detail.


Subject(s)
Carcinoma, Squamous Cell , Head and Neck Neoplasms , Psoriasis , Carcinoma, Squamous Cell/metabolism , Down-Regulation , Female , Humans , Membrane Proteins/genetics , Neoplasm Proteins/genetics , Prognosis , Psoriasis/genetics
9.
Indian J Clin Biochem ; 36(2): 131-142, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33867703

ABSTRACT

Circulating tumour cells (CTCs), are disseminated tumour cells found in the blood in solid tumour malignancies. Identification of CTCs act as emerging tools in the field of the Liquid Biopsy. Majority of the studies focused on detection and enumeration of CTCs due to technological challenges those results from the rarity of CTCs in the blood. Enumeration of CTCs has already proven their value as prognostic as well as predictive biomarkers for disease prognosis. However, recent advances in technology permitted to study the molecular and functional features of CTCs and these features have the potential to change the diagnostic, prognostic and predictive landscape in oncology. In this review, we summarize the paradigm shift in the field of liquid biopsy-based cancer diagnostics using CTC isolation and detection. We have discussed recent advances in the technologies for molecular characterization of CTCs which have aided a shift from CTC enumeration to an in-depth analysis of the CTC genome, transcriptomes, proteins, epigenomes along with various functional features. Finally, as a prognosticating strategy, the potentials of CTCs as a tool of liquid biopsy to predict micrometastasis, monitor prognosis and how to use them as an additional tool for cancer staging has been discussed.

10.
Indian J Clin Biochem ; 36(4): 468-472, 2021 Oct.
Article in English | MEDLINE | ID: mdl-33746377

ABSTRACT

Humankind is facing its worst pandemic of the twenty-first century, due to infection of a novel coronavirus named as SARS-CoV2, started from Wuhan in China. Till now, 15 million people are infected, causing more than 600,000 deaths. The disease, commonly known as, COVID-19, was initially thought to be associated with ARDS only, but later on revealed to have many unexplained and atypical clinical features like coagulopathy and cytokinemia, leading to multi-organ involvements. The patients also suffer from 'Silent Hypoxemia', where there is no immediate respiratory signs and symptoms even though alarmingly low SpO2 level. We hypothesize that this covert hypoxemia may lead to molecular changes exacerbating coagulopathy and cytokine storm in COVID19 patients, which again, in turn, causes a vicious cycle of more hypoxemia/hypoxia and progression of the infection to more severe stages through HIF-1α dependent pathway. Although molecular mechanisms are yet to be substantiated by scientific evidence, hypoxemia remains an independent worsening factor in serious COVID 19 patients. Keeping all in mind, we propose that even in the early and asymptomatic cases, prophylactic oxygen therapy to be initiated to break the vicious cycle and to reduce the mortality in COVID 19 to save precious human lives.

11.
Med Hypotheses ; 144: 109987, 2020 Nov.
Article in English | MEDLINE | ID: mdl-32562913

ABSTRACT

In 2019, a new coronavirus (SARS CoV2) infecting humans has emerged in Wuhan, China which caused an unprecedented pandemic involving at least 185 countries infecting 2.5 million people till date. This virus is transmitted directly or indirectly through the upper aerodigestive tract. As it is evident from the recent studies that SARS-CoV-2 requires host enzyme Furin to activate receptor binding domain of its S protein and host Angiotensin Convertase Enzyme 2 (ACE2) is required as binding receptor, facilitating the entry of virus into the host cell. Evidence from literature shows that oral cancer tissues as well as paracarcinoma tissue exhibit higher expression of both Furin and ACE2, giving rise to the hypothesis that patients with oral cancer have higher chances of SARS CoV2 infection. It is also hypothesised that there will be increased severity of disease due to facilitated entry of the virus into the cells. Therefore, we suggest oral cancer patients require extra attention during COVID-19 pandemic and re-evaluation of current treatment paradigms in oral oncology is also needed.


Subject(s)
Angiotensin-Converting Enzyme 2/physiology , COVID-19/virology , Furin/metabolism , Mouth Neoplasms/virology , Neoplasm Proteins/metabolism , Receptors, Virus/physiology , SARS-CoV-2/physiology , Virus Internalization , Angiotensin-Converting Enzyme 2/biosynthesis , Angiotensin-Converting Enzyme 2/genetics , COVID-19/epidemiology , COVID-19/prevention & control , Disease Susceptibility , Furin/genetics , Gene Expression Regulation, Neoplastic , Humans , Models, Biological , Mouth Neoplasms/genetics , Mouth Neoplasms/metabolism , Neoplasm Proteins/genetics , Pandemics , Protein Binding , Receptors, Virus/biosynthesis , Receptors, Virus/genetics , Spike Glycoprotein, Coronavirus/metabolism , Up-Regulation
SELECTION OF CITATIONS
SEARCH DETAIL
...