Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Indian J Pathol Microbiol ; 63(1): 13-18, 2020.
Article in English | MEDLINE | ID: mdl-32031116

ABSTRACT

BACKGROUND: Beta-catenin and cyclin D1 have attracted considerable attention in recent studies as potential proto-oncogenes in many human cancers especially colonic cancer. Beta-catenin plays multiple roles within the cell such as canonical Wnt signaling where cyclin D1 has been identified as one of its target genes. The role of beta-catenin and cyclin D1 in breast cancer has been evaluated in many studies but not established yet. MATERIALS AND METHODS: The expression of beta-catenin and cyclin D1 was evaluated in 82 cases of breast carcinoma (BCa) and 32 cases of ductal carcinoma in situ(DCIS) by immunohistochemistry (IHC). Their relationship with clinicopathological features was also investigated. Statistical analysis was done to establish an association. RESULTS: Abnormal expression of beta-catenin (ABE) was seen in 80.2% cases of invasive ductal carcinoma (IDC) and 47% cases of DCIS, while the cyclin D1 positive expression rate was 60.9% and 50%, respectively. In the cases showing ABE, cyclin D1 positivity was 88.1%. ABE showed significant association with high-grade BCa. The most common pattern of ABE was loss of membrane with nuclear positivity which is associated with worst prognosis. In addition, ABE in cases of BCa and DCIS showed concordant patterns. CONCLUSION: Therefore, an association exists between ABE and cyclin D1 in BCa and its precursor lesions implying that Wnt/beta-catenin oncogenic pathway may have a definite role in breast carcinogenesis and can be used for targeted therapy. Also, different patterns of beta-catenin expression may have prognostic and predictive value.


Subject(s)
Breast Neoplasms/genetics , Carcinoma, Intraductal, Noninfiltrating/genetics , Cyclin D1/genetics , beta Catenin/genetics , Breast Neoplasms/classification , Breast Neoplasms/pathology , Carcinoma, Intraductal, Noninfiltrating/pathology , Female , Genetic Association Studies , Humans , Immunohistochemistry , Middle Aged , Prognosis
2.
Oecologia ; 84(3): 289-294, 1990 Oct.
Article in English | MEDLINE | ID: mdl-28313018

ABSTRACT

Fumigation experiments with SO2 performed on the seedlings of three plant species viz, tomato (Lycopersicon esculentum), mung bean (Vigna radiata) and maize (Zea mays) resulted in the emission of volatiles. Acetaldehyde and ethanol were produced in the fumigated plants. In addition, there was also an increased production of ethylene and ethane. The production of these volatiles was positively correlated to the SO2 concentrations of 4.2 and 8.3 µmol m-3 (0.1 and 0.2 ppm). Ethylene was emitted primarily from SO2-stressed yet healthy leaves, whereas high ethane levels were detected in leaves with visible injury symptoms. However, with the appearance of visible injury symptoms, there was a decline in ethylene, acetaldehyde and ethanol emissions. Synthesis of ethylene and ethane seems to be a result of different metabolic pathways. Ethane evolution and its inhibition by antioxidants indicate SO2-mediated lipid peroxidation by free radical species formed during sulphite oxidation. Perturbation in the cellular respiratory machinery results in the formation of acetaldehyde and ethanol. Since the rates of emissions of ethane, acetaldehyde and ethanol fromplant species were positively correlated to their relative resistance to SO2, the production of these gases could be used as a reliable diagnostic tool for biomonitoring air pollution (SO2) stress.

SELECTION OF CITATIONS
SEARCH DETAIL
...