Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Infect Genet Evol ; 41: 47-55, 2016 07.
Article in English | MEDLINE | ID: mdl-26988711

ABSTRACT

Considering malaria as a local and focal disease, epidemiological understanding of different ecotypes of malaria can help in devising novel control measures. One of the major hurdles in malaria control lies on the evolution and dispersal of the drug-resistant malaria parasite, Plasmodium falciparum. We herewith present data on genetic variation at the Single Nucleotide Polymorphism (SNP) level in four different genes of P. falciparum (Pfcrt, Pfmdr1, Pfdhfr, and Pfdhps) that confer resistance to different antimalarials in two different eco-epidemiological settings, i.e. Hilly-Forest (HF) and Riverine-Plain (RP), in a high malaria endemic district of Odisha state, India. Greater frequency of antimalarial resistance conferring SNPs and haplotypes was observed in all four genes in P. falciparum, and Pfdhps was the most variable gene among the four. No significant genetic differentiation could be observed in isolates from HF and RP ecotypes. Twelve novel, hitherto unreported nucleotide mutations could be observed in the Pfmdr1 and Pfdhps genes. While the Pfdhps gene presented highest haplotype diversity, the Pfcrt gene displayed the highest nucleotide diversity. When the data on all the four genes were complied, the isolates from HF ecotype were found to harbour higher average nucleotide diversity than those coming from RP ecotype. High and positive Tajima's D values were obtained for the Pfcrt and Pfdhfr genes in isolates from both the HF and RP ecotypes, with statistically significant deviation from neutrality in the RP ecotype. Different patterns of Linkage Disequilibrium (LD) among SNPs located in different drug-resistant genes were found in the isolates collected from HF and RP ecotypes. Whereas in the HF ecotype, SNPs in the Pfmdr1 and Pfdhfr were significantly associated, in the RP ecotype, SNPs located in Pfcrt were associated with Pfmdr1, Pfdhfr and Pfdhps. These findings provide a baseline understanding on how different micro eco-epidemiological settings influence evolution and spread of different drug resistance alleles. Our findings further suggest that drug resistance to chloroquine and sulfadoxine-pyrimethamine is approaching fixation level, which requires urgent attention of malaria control programme in India.


Subject(s)
Dihydropteroate Synthase/genetics , Drug Resistance/genetics , Malaria, Falciparum/epidemiology , Membrane Transport Proteins/genetics , Multidrug Resistance-Associated Proteins/genetics , Plasmodium falciparum/genetics , Protozoan Proteins/genetics , Tetrahydrofolate Dehydrogenase/genetics , Alleles , Antimalarials/pharmacology , Chloroquine/pharmacology , Drug Combinations , Ecotype , Gene Expression , Haplotypes , Humans , India/epidemiology , Linkage Disequilibrium , Malaria, Falciparum/drug therapy , Malaria, Falciparum/parasitology , Mutation , Plasmodium falciparum/growth & development , Polymorphism, Single Nucleotide , Pyrimethamine/pharmacology , Sulfadoxine/pharmacology
2.
Infect Genet Evol ; 26: 213-22, 2014 Aug.
Article in English | MEDLINE | ID: mdl-24911283

ABSTRACT

Mutations in the Plasmodium falciparum multidrug resistance (pfmdr1) gene are known to provide compensatory fitness benefits to the chloroquine (CQ)-resistant malaria parasites and are often associated with specific mutations in the P. falciparum CQ resistant transporter (pfcrt) gene. Prevalence of the specific mutations in these two genes across different malaria endemic regions was mostly studies. However, reports on mutations in the pfmdr1 gene and their genetic associations with mutations in the pfcrt gene in Indian P. falciparum field isolates are scarce. We have sequenced a 560 bp region of pfmdr1 coding sequence in 64 P. falciparum isolates collected from different malaria endemic populations in India. Twenty out of these 64 isolates were laboratory cultured with known in vitro CQ sensitiveness (10 sensitive and 10 resistant). Three low frequency mutations (two non-synonymous and one synonymous) in the pfmdr1 gene were segregating in Indian isolates in addition to the predominant Y86 and Y184 ones, with high haplotype and nucleotide diversity in the field isolates in comparison to the cultured ones. No statistically significant genetic association between the mutations in the pfmdr1 and pfcrt gene could be detected; almost all observed associations were intragenic in nature. The results on the genetic diversity of the pfmdr1 gene were discussed in term of evolutionary perspectives in Indian P. falciparum, with possible future potential of gaining further insights on this gene in view of evolving malaria parasites resistant to artemisinin partner drugs.


Subject(s)
Malaria, Falciparum/epidemiology , Malaria, Falciparum/parasitology , Membrane Transport Proteins/genetics , Multidrug Resistance-Associated Proteins/genetics , Mutation , Plasmodium falciparum/genetics , Polymorphism, Genetic , Protozoan Proteins/genetics , Gene Frequency , Genotype , Geography , Haplotypes , Humans , India/epidemiology , Linkage Disequilibrium , Molecular Sequence Data , Plasmodium falciparum/isolation & purification , Polymorphism, Single Nucleotide , Sequence Analysis, DNA
3.
Infect Genet Evol ; 20: 476-87, 2013 Dec.
Article in English | MEDLINE | ID: mdl-24157593

ABSTRACT

Evolution and spread of chloroquine resistant (CQR) malaria parasite Plasmodium falciparum have posed great threat in malaria intervention across the globe. The occurrence of K76T mutation in the P. falciparum chloroquine resistance transporter (pfcrt) gene has been widely attributed to CQR with four neighboring mutations providing compensatory fitness benefit to the parasite survival. Understanding evolutionary patterns of the pfcrt gene is of great relevance not only for devising new malaria control measures but also could serve as a model to understand evolution and spread of other human drug-resistant pathogens. Several studies, mainly based on differential patterns of diversities of the microsatellite loci placed in-and-around the pfcrt gene have indicated the role of positive natural selection under the 'hitchhiking' model of molecular evolution. However, the studies were restricted to limited number of microsatellite loci present inside the pfcrt gene. Moreover, comparatively higher level of diversities in microsatellite loci present inside the pfcrt gene than the loci flanking the pfcrt gene are hallmarks of Indian P. falciparum, presenting contrasting evolutionary models to global isolates. With a view to infer evolutionary patterns of the pfcrt gene in Indian P. falciparum, we have adopted a unique sampling scheme of two types of populations (cultured and field collected) and utilized 20 polymorphic microsatellite loci (16 located inside the pfcrt gene and four in the two flanking regions) to disentangle between genetic drift (inbred cultured isolates) and natural selection (field isolates). Data analyses employing different population genetic tests could not straightforwardly explain either the model invoking 'genetic hitchhiking' or 'genetic drift'. However, complex evolutionary models influenced by both demography and natural selection or an alternative model of natural selection (e.g. diversifying/balancing selection) might better explain the observed microsatellite variation in-and-around the pfcrt gene in Indian P. falciparum.


Subject(s)
Chloroquine/therapeutic use , Malaria, Falciparum/parasitology , Membrane Transport Proteins/genetics , Plasmodium falciparum/drug effects , Plasmodium falciparum/genetics , Protozoan Proteins/genetics , Antimalarials/therapeutic use , Base Sequence , DNA, Protozoan/genetics , Drug Resistance/genetics , Evolution, Molecular , Genetic Drift , Genetic Variation , Haplotypes/genetics , Heterozygote , Humans , India , Linkage Disequilibrium/genetics , Malaria, Falciparum/drug therapy , Microsatellite Repeats/genetics , Plasmodium falciparum/isolation & purification , Selection, Genetic , Sequence Analysis, DNA
SELECTION OF CITATIONS
SEARCH DETAIL
...