Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 53
Filter
1.
Protoplasma ; 260(2): 453-466, 2023 Mar.
Article in English | MEDLINE | ID: mdl-35767110

ABSTRACT

Picrorhiza kurroa Royle ex Benth is a valuable medicinal herb of North-Western Himalayas due to presence of two major bioactive compounds, picroside-I and picroside-II used in the preparation of several hepatoprotective herbal drugs. These compounds accumulate in stolons/rhizomes; however, biosynthesized in different organs, viz., picroside-I in shoots and picroside-II in roots. As of today, no information exists on what transporters are transporting these metabolites from shoots and roots to the final storage organ, stolon, which ultimately transforms into rhizome. The ATP-binding cassette (ABC) transporters are reported to transport majority of secondary metabolites, including terpenoids in plants, therefore, we mined P. kurroa transcriptomes to identify and shortlist potential candidates. A total of 99 ABC transporter-encoding transcripts were identified in 3 differential transcriptomes, PKSS (shoots), PKSTS (stolons), and PKSR (roots) of P. kurroa, based on in silico comparative analysis and transcript abundance. 15 of these transcripts were further validated for their association using qRT-PCR in shoots, roots and stolon tissues in P. kurroa accessions varying for picroside-I and picroside-II contents. Organ-specific expression analysis revealed that PkABCA1, PkABCG1, and PkABCB5 had comparatively elevated expression in shoots; PkABCB2 and PkABCC2 in roots; PkABCB3 and PkABCC1 in stolon tissues of P. kurroa. Co-expression network analysis using ABC genes as hubs further unravelled important interactions with additional components of biosynthetic machinery. Our study has provided leads, first to our knowledge as of today, on putative ABC transporters possibly involved in long distance and local transport of picrosides in P. kurroa organs, thus opening avenues for designing a suitable genetic intervention strategy.


Subject(s)
Picrorhiza , Plants, Medicinal , Plants, Medicinal/genetics , Plants, Medicinal/metabolism , Transcriptome/genetics , Picrorhiza/genetics , Picrorhiza/chemistry , Picrorhiza/metabolism , ATP-Binding Cassette Transporters/genetics , ATP-Binding Cassette Transporters/metabolism , Gene Expression Profiling
2.
Bioorg Med Chem ; 73: 117009, 2022 11 01.
Article in English | MEDLINE | ID: mdl-36126446

ABSTRACT

Nucleic acid amplification technique (NAAT)-assisted detection is the primary intervention for pathogen molecular diagnostics. However, NAATs such as quantitative real-time polymerase chain reaction (qPCR) require prior purification or extraction of target nucleic acid from the sample of interest since the latter often contains polymerase inhibitors. Similarly, genetic disease screening is also reliant on the successful extraction of pure patient genomic DNA from the clinical sample. However, such extraction techniques traditionally utilize spin-column techniques that in turn require centralized high-speed centrifuges. This hinders any potential deployment of qPCR- or PCR-like NAAT methods in resource-constrained settings. The development of instrument-free nucleic acid extraction methods, especially those utilizing readily available materials would be of great interest and benefit to NAAT-mediated molecular diagnosis workflows in resource-constrained settings. In this report, we screened medical-grade cotton, a readily available over-the-counter biomaterial to extract genomic DNA (gDNA) spiked in 30 %, 45 %, and 60 % serum or cell lysate. The extraction was carried out in a completely instrument-free manner using cotton and a sterilized toothpick and was completed in 30 min (with using chaotropic salt) or 10 min (without using chaotropic salt). The quality of the extracted DNA was then probed using PCR followed by agarose gel analysis for preliminary validation of the study. The qPCR experiments then quantitatively established the extraction efficiency (0.3-27 %, depending on serum composition). Besides, percent similarity score obtained from the Sanger sequencing experiments probed the feasibility of extracted DNA towards polymerase amplification with fluorescent nucleotide incorporation. Overall, our method demonstrated that DNA extraction could be performed utilizing toothpick-mounted cotton both with or without using a chaotropic salt, albeit with a difference in the quality of the extracted DNA.


Subject(s)
Nucleic Acids , Biocompatible Materials , DNA/genetics , Humans , Nucleic Acids/analysis , Nucleotides , Real-Time Polymerase Chain Reaction/methods , Sepharose
3.
Mol Biol Rep ; 49(6): 5567-5576, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35581509

ABSTRACT

BACKGROUND: Picrorhiza kurroa has been reported as an age-old ayurvedic hepato-protection to treat hepatic disorders due to the presence of iridoids such as picroside-II (P-II), picroside-I, and kutkoside. The acylation of catalpol and vanilloyl coenzyme A by acyltransferases (ATs) is critical step in P-II biosynthesis. Since accumulation of P-II occurs only in roots, rhizomes and stolons in comparison to leaves uprooting of this critically endangered herb has been the only source of this compound. Recently, we reported that P-II acylation likely happen in roots, while stolons serve as the vital P-II storage compartment. Therefore, developing an alternate engineered platform for P-II biosynthesis require identification of P-II specific AT/s. METHODS AND RESULTS: In that direction, egg-NOG function annotated 815 ATs from de novo RNA sequencing of tissue culture based 'shoots-only' system and nursery grown shoots, roots, and stolons varying in P-II content, were cross-compared in silico to arrive at ATs sequences unique and/or common to stolons and roots. Verification for organ and accession-wise upregulation in gene expression of these ATs by qRT-PCR has shortlisted six putative 'P-II-forming' ATs. Further, six-frame translation, ab initio protein structure modelling and protein-ligand molecular docking of these ATs signified one MBOAT domain containing AT with preferential binding to the vanillic acid CoA thiol ester as well as with P-II, implying that this could be potential AT decorating final structure of P-II. CONCLUSIONS: Organ-wise comparative transcriptome mining coupled with reverse transcription real time qRT-PCR and protein-ligand docking led to the identification of an acyltransferases, contributing to the final structure of P-II.


Subject(s)
Picrorhiza , Plants, Medicinal , Acyltransferases/genetics , Acyltransferases/metabolism , Cinnamates/metabolism , Glycosides , Iridoid Glucosides/metabolism , Iridoids/metabolism , Ligands , Molecular Docking Simulation , Picrorhiza/genetics , Picrorhiza/metabolism , Plants, Medicinal/genetics , Plants, Medicinal/metabolism
4.
J Biomol Struct Dyn ; 40(24): 14096-14114, 2022.
Article in English | MEDLINE | ID: mdl-34766880

ABSTRACT

SARS-CoV-2 (COVID-19) viral pandemic has been reported across 223 countries and territories. Globalized vaccination programs alongside administration of repurposed drugs will assumingly confer a stronger and longer individual specific immune protection. However, considering possible recurrence of the disease via new variants, a conveniently deliverable phytopharmaceutical drug might be the best option for COVID-19 treatment. In the current study, the efforts have been made to identify potential leads for inhalation therapy as nasal swabs have been reported to transfer viral load prominently. In that direction, 2363 Essential oil (EOs) compounds from Indian medicinal and aromatic plants were screened through docking analysis and potential candidates were shortlisted that can interfere with viral pathogenicity. The main protease (Mpro) of SARS-CoV-2 interacted closely with jatamansin (JM), 6,7-dehydroferruginol (FG) and beta-sitosterol (BS), while Papain-like Protease (PLpro) with friedelane-3-one (F3O) and lantadene D (LD) independently. Reduced Lantadene A (LAR) exhibited preferable interaction with RNA-dependent-RNA-polymerase (RdRp) whereas Lantadene A (LA) with RdRp and spike-glycoprotein (SG-pro) both target proteins. When compared against highest binding affinity conformations of well-known inhibitors of targets, these prioritized compounds conferred superior or comparable SARS-CoV-2 protein inhibition. Additionally, promising results were noted from pharmacokinetics prediction for all shortlisted compounds. Besides, molecular dynamics simulation for 100 ns in two replicates and binding free energy analysis revealed the stability of complexes with optimum compactness. To the best of our knowledge, the current investigation is a unique initial attempt whereby EO compounds have been computationally screened, irrespective of their known medicinal properties to fight COVID-19 infection.Communicated by Ramaswamy H. Sarma.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , COVID-19 Drug Treatment , Virulence , Molecular Dynamics Simulation , Papain , RNA , Molecular Docking Simulation , Protease Inhibitors/pharmacology , Antiviral Agents/pharmacology
5.
Genomics ; 113(5): 3381-3394, 2021 09.
Article in English | MEDLINE | ID: mdl-34332040

ABSTRACT

Picrorhiza kurroa is a medicinal herb rich in hepatoprotective iridoid glycosides, picroside-I (P-I) and picroside-II (P-II). The biosynthetic machinery of picrosides is poorly understood, therefore, 'no-direction' gene co-expression networks were used to extract linked/closed and separated interactions in terpenoid glycosides-specific sub-networks. Transcriptomes generated from different organs, varying for P-I and P-II contents such as shoots grown at 15 and 25 °C and nursery-grown shoots, stolons, and roots resulted in 47,726, 44,958, 40,117, 66,979, and 55,578 annotated transcripts, respectively. Occurrence of 2810 ± 136 nodes and 15,626 ± 696 edges in these networks indicated intense, co-expressed, closed loop interactions. Either deregulation/inhibition of abscisic acid (ABA) biosynthesis/signaling or constitutive degradation of ABA resulted in organ-specific accumulation of P-I and P-II. Biosynthesis, condensation and glucosylation of isoprene units may occur in shoots, roots or stolons; but addition of phenylpropanoid moiety and further modification/s of the iridoid backbone occurs mainly inside vacuoles in roots.


Subject(s)
Picrorhiza , Gene Expression Profiling , Genes, Plant , Iridoid Glycosides/metabolism , Picrorhiza/genetics , Picrorhiza/metabolism , Transcriptome
6.
Mol Genet Genomics ; 296(4): 863-876, 2021 Jul.
Article in English | MEDLINE | ID: mdl-33899140

ABSTRACT

Picrorhiza kurroa is a medicinal herb with diverse pharmacological applications due to the presence of iridoid glycosides, picroside-I (P-I), and picroside-II (P-II), among others. Any genetic improvement in this medicinal herb can only be undertaken if the biosynthetic pathway genes are correctly identified. Our previous studies have deciphered biosynthetic pathways for P-I and P-II, however, the occurrence of multiple copies of genes has been a stumbling block in their usage. Therefore, a methodological strategy was designed to identify and prioritize paralogues of pathway genes associated with contents of P-I and P-II. We used differential transcriptomes varying for P-I and P-II contents in different tissues of P. kurroa. All transcripts for a particular pathway gene were identified, clustered based on multiple sequence alignment to notify as a representative of the same gene (≥ 99% sequence identity) or a paralogue of the same gene. Further, individual paralogues were tested for their expression level via qRT-PCR in tissue-specific manner. In total 44 paralogues in 14 key genes have been identified out of which 19 gene paralogues showed the highest expression pattern via qRT-PCR. Overall analysis shortlisted 6 gene paralogues, PKHMGR3, PKPAL2, PKDXPS1, PK4CL2, PKG10H2 and PKIS2 that might be playing role in the biosynthesis of P-I and P-II, however, their functional analysis need to be further validated either through gene silencing or over-expression. The usefulness of this approach can be expanded to other non-model plant species for which transcriptome resources have been generated.


Subject(s)
Iridoid Glycosides/metabolism , Picrorhiza , Plants, Medicinal , Biosynthetic Pathways/genetics , Cinnamates/metabolism , Cinnamates/pharmacology , Cytoprotection/drug effects , Cytoprotection/genetics , Gene Expression Profiling , Gene Expression Regulation, Plant , Gene Regulatory Networks/physiology , Genes, Plant , High-Throughput Screening Assays , Iridoid Glucosides/metabolism , Iridoid Glucosides/pharmacology , Iridoid Glycosides/pharmacology , Liver/drug effects , Liver/physiology , Picrorhiza/chemistry , Picrorhiza/genetics , Picrorhiza/metabolism , Plant Roots/genetics , Plant Roots/metabolism , Plant Shoots/genetics , Plant Shoots/metabolism , Plants, Medicinal/chemistry , Plants, Medicinal/genetics , Plants, Medicinal/metabolism , Sequence Homology , Transcriptome/physiology
7.
Asian J Transfus Sci ; 14(2): 172-178, 2020.
Article in English | MEDLINE | ID: mdl-33767545

ABSTRACT

BACKGROUND: Himachal Pradesh is a hill state in North India in the Western Himalayas. ß-thalassemia is a genetic disorder of hemoglobin inherited in an autosomal recessive manner that results in defective globin production leading to the early destruction of red blood cells. ß-thalassemia has long been neglected in Himachal Pradesh due to popular belief that it runs along "Lahore-Gujarat-Punjab" belt in India. Therefore, there is no ß-thalassemia testing facility currently in the state. METHODS: To estimate the prevalence of ß-thalassemia carriers, we calculated the sample size based on probability proportional to size self-weighing design. In each of 20 selected colleges, 111 students having an age of 18-25 were tested for high-performance liquid chromatography (HPLC) and complete blood count. Some were further tested for the mutations. We computed sensitivity, specificity, positive predictive value (PPV) and negative predictive value, and receiver operating characteristic curve for mean corpuscular volume (MCV) and mean corpuscular hemoglobin (MCH) red cell parameters. RESULTS: Of the 2220 students, 57 were found to be ß-thalassemia carrier by HPLC. The overall prevalence rate was 2.6% which translates to probable 180,000 ß-thalassemia carriers in Himachal Pradesh. Six districts bordering highly endemic Punjab had a higher prevalence. Hemoglobin D-Punjab, Heterozygous-Iran Trait, and raised fetal hemoglobin were found. Thalassemia major and sickle cell disease were not found. Anemic status or MCV/MCH parameters were not found to be reliable predictors of thalassemia carrier status among the healthy populations of HP. The predominant mutation found was IVS 1-5 G > C. CONCLUSION: Popular ongoing strategy for screening with MCV and MCH has low-PPV and can miss upto 37% of true thalassemia carriers. HPLC is better strategy for screening carriers and reduces further spread of thalassemia.

8.
Sci Rep ; 8(1): 2584, 2018 02 02.
Article in English | MEDLINE | ID: mdl-29396504

ABSTRACT

A correction to this article has been published and is linked from the HTML version of this paper. The error has been fixed in the paper.

9.
3 Biotech ; 8(1): 64, 2018 Jan.
Article in English | MEDLINE | ID: mdl-29354375

ABSTRACT

The low seed yield of Jatropha curcas has been a stumbling block in realizing its full potential as an ideal bioenergy crop. Low female to male flower ratio is considered as a major limiting factor responsible for low seed yield in Jatropha. An exogenous cytokinin application was performed on floral meristems to increase the seed yield. This resulted in an increase of total flowers count with a higher female to male flower ratio. However, the seed biomass did not increase in the same proportion. The possible reason for this was hypothesized to be the lack of increased photosynthesis efficiency at source tissues which could fulfil the increased demand of photosynthates and primary metabolites in maturing seeds. After cytokinin application, possible molecular mechanisms underlying carbon capture and flux affected between the source and sink in developing flowers, fruits and seeds were investigated. Comparative transcriptome analysis was performed on inflorescence meristems (treated with cytokinin) and control (untreated inflorescence meristems) at time intervals of 15 and 30 days, respectively. KEGG-based functional annotation identified various metabolic pathways associated with carbon capture and flux. Pathways such as photosynthesis, carbon fixation, carbohydrate metabolism and nitrogen metabolism were upregulated after 15 days of cytokinin treatment; however, those were downregulated after 30 days. Five genes FBP, SBP, GS, GDH and AGPase showed significant increase in transcript abundance after 15 days of treatment but showed a significant decrease after 30 days. These genes, after functional validation, can be suitable targets in designing a suitable genetic intervention strategy to increase overall seed yield in Jatropha.

10.
Mol Biol Rep ; 45(2): 77-98, 2018 Apr.
Article in English | MEDLINE | ID: mdl-29349608

ABSTRACT

Swertia chirayita is a high-value medicinal herb exhibiting antidiabetic, hepatoprotective, anticancer, antiediematogenic and antipyretic properties. Scarcity of its plant material has necessitated in vitro production of therapeutic metabolites; however, their yields were low compared to field grown plants. Possible reasons for this could be differences in physiological and biochemical processes between plants grown in photoautotrophic versus photoheterotrophic modes of nutrition. Comparative transcriptomes of S. chirayita were generated to decipher the crucial molecular components associated with the secondary metabolites biosynthesis. Illumina HiSeq sequencing yielded 57,460 and 43,702 transcripts for green house grown (SCFG) and tissue cultured (SCTC) plants, respectively. Biological role analysis (GO and COG assignments) revealed major differences in SCFG and SCTC transcriptomes. KEGG orthology mapped 351 and 341 transcripts onto secondary metabolites biosynthesis pathways for SCFG and SCTC transcriptomes, respectively. Nineteen out of 30 genes from primary metabolism showed higher in silico expression (FPKM) in SCFG versus SCTC, possibly indicating their involvement in regulating the central carbon pool. In silico data were validated by RT-qPCR using a set of 16 genes, wherein 10 genes showed similar expression pattern across both the methods. Comparative transcriptomes identified differentially expressed transcription factors and ABC-type transporters putatively associated with secondary metabolism in S. chirayita. Additionally, functional classification was performed using NCBI Biosystems database. This study identified the molecular components implicated in differential modes of nutrition (photoautotrophic vs. photoheterotrophic) in relation to secondary metabolites production in S. chirayita.


Subject(s)
Gene Expression Profiling/methods , Swertia/genetics , Swertia/metabolism , Autotrophic Processes/physiology , High-Throughput Nucleotide Sequencing/methods , Phototrophic Processes/physiology , Plant Extracts , Plants, Medicinal/genetics , Secondary Metabolism/physiology , Swertia/physiology , Transcriptome/genetics
11.
Sci Rep ; 7(1): 14604, 2017 11 06.
Article in English | MEDLINE | ID: mdl-29097749

ABSTRACT

For understanding complex biological systems, a systems biology approach, involving both the top-down and bottom-up analyses, is often required. Numerous system components and their connections are best characterised as networks, which are primarily represented as graphs, with several nodes connected at multiple edges. Inefficient network visualisation is a common problem related to transcriptomic and genomic datasets. In this article, we demonstrate an miRNA analysis framework with the help of Jatropha curcas healthy and disease transcriptome datasets, functioning as a pipeline derived from the graph theory universe, and discuss how the network theory, along with gene ontology (GO) analysis, can be used to infer biological properties and other important features of a network. Network profiling, combined with GO, correlation, and co-expression analyses, can aid in efficiently understanding the biological significance of pathways, networks, as well as a studied system. The proposed framework may help experimental and computational biologists to analyse their own data and infer meaningful biological information.


Subject(s)
Computational Biology/methods , MicroRNAs/metabolism , Gene Expression Profiling , Gene Ontology , Jatropha/metabolism , Plant Diseases , Plant Leaves/metabolism , Transcriptome
12.
Braz. j. microbiol ; 48(2): 193-195, April.-June 2017. tab
Article in English | LILACS | ID: biblio-839391

ABSTRACT

Abstract Ralstonia solanacearum is a heterogeneous species complex causing bacterial wilts in more than 450 plant species distributed in 54 families. The complexity of the genome and the wide diversity existing within the species has led to the concept of R. solanacearum species complex (RsSC). Here we report the genome sequence of the four strains (RS2, RS25, RS48 and RS75) belonging to three of the four phylotypes of R. solanacearum that cause potato bacterial wilt in India. The genome sequence data would be a valuable resource for the evolutionary, epidemiological studies and quarantine of this phytopathogen.


Subject(s)
Plant Diseases/microbiology , Solanum tuberosum/microbiology , DNA, Bacterial/chemistry , Genome, Bacterial , Sequence Analysis, DNA , Ralstonia solanacearum/genetics , Genotype , DNA, Bacterial/genetics , Ralstonia solanacearum/isolation & purification , Ralstonia solanacearum/classification , India
13.
Front Plant Sci ; 8: 564, 2017.
Article in English | MEDLINE | ID: mdl-28443130

ABSTRACT

Picroside-II (P-II), an iridoid glycoside, is used as an active ingredient of various commercial herbal formulations available for the treatment of liver ailments. Despite this, the knowledge of P-II biosynthesis remains scarce owing to its negligence in Picrorhiza kurroa shoots which sets constant barrier for function validation experiments. In this study, we utilized natural variation for P-II content in stolon tissues of different P. kurroa accessions and deciphered its metabolic route by integrating metabolomics of intermediates with differential NGS transcriptomes. Upon navigating through high vs. low P-II content accessions (1.3-2.6%), we have established that P-II is biosynthesized via degradation of ferulic acid (FA) to produce vanillic acid (VA) which acts as its immediate biosynthetic precursor. Moreover, the FA treatment in vitro at 150 µM concentration provided further confirmation with 2-fold rise in VA content. Interestingly, the cross-talk between different compartments of P. kurroa, i.e., shoots and stolons, resolved spatial complexity of P-II biosynthesis and consequently speculated the burgeoning necessity to bridge gap between VA and P-II production in P. kurroa shoots. This work thus, offers a forward looking strategy to produce both P-I and P-II in shoot cultures, a step toward providing a sustainable production platform for these medicinal compounds via-à-vis relieving pressure from natural habitat of P. kurroa.

14.
Braz J Microbiol ; 48(2): 193-195, 2017.
Article in English | MEDLINE | ID: mdl-28041840

ABSTRACT

Ralstonia solanacearum is a heterogeneous species complex causing bacterial wilts in more than 450 plant species distributed in 54 families. The complexity of the genome and the wide diversity existing within the species has led to the concept of R. solanacearum species complex (RsSC). Here we report the genome sequence of the four strains (RS2, RS25, RS48 and RS75) belonging to three of the four phylotypes of R. solanacearum that cause potato bacterial wilt in India. The genome sequence data would be a valuable resource for the evolutionary, epidemiological studies and quarantine of this phytopathogen.


Subject(s)
DNA, Bacterial/chemistry , Genome, Bacterial , Genotype , Plant Diseases/microbiology , Ralstonia solanacearum/genetics , Sequence Analysis, DNA , Solanum tuberosum/microbiology , DNA, Bacterial/genetics , India , Ralstonia solanacearum/classification , Ralstonia solanacearum/isolation & purification
15.
Protoplasma ; 254(1): 217-228, 2017 Jan.
Article in English | MEDLINE | ID: mdl-26733390

ABSTRACT

Podophyllum species (Podophyllum hexandrum Royle and Podophyllum peltatum) are a major source of deriving anticancer drugs from their major chemical constituent, podophyllotoxin. However, information lacks on regulatory components of podophyllotoxin biosynthesis; therefore, different classes of transcription factors were identified through mining transcriptomes of Podophyllum species and validated through qRT-PCR analysis vis-à-vis podophyllotoxin contents in different tissues/organs of Podophyllum hexandrum. A total of 82, 278, 70, and 90 transcripts were identified in shoots and 89, 273, 72, and 91 transcripts in rhizomes of P. hexandrum transcriptome; 70, 268, 48, and 92 transcripts were in shoots and 58, 245, 41, and 85 transcripts in rhizomes of P. peltatum transcriptome corresponding to bZIP, MYB, WRKY, and bHLH families of transcription factors, which have been shown in regulating biosynthesis of secondary metabolites. Two unique transcripts encoding bHLH and MYB/SANT TFs in shoots of P. peltatum (medp_podpe_41091 and medp_podpe_2547) and bZIP and MYB TFs in rhizomes of P. hexandrum (medp_podhe_163581 and medp_podhe_147614) correlated with podophyllotoxin content. Quantification of podophyllotoxin and comparative expression analysis between high (2.51 %) versus low (0.59) podophyllotoxin content accessions revealed 0.04 to ~16-folds increase in transcripts of transcription factors, thereby further supporting the association of identified transcription factors with podophyllotoxin content. bZIP TF showed the highest transcript abundance (19.60-folds) in P. hexandrum rhizomes (2.51 % podophyllotoxin) compared to shoots (0.01 %). In silico analysis of putative promoter regions of pathway genes in other plant species revealed the presence of sequence elements for MYB and WRKY transcription factors, thereby suggesting their role in controlling the production of podophyllotoxin. A repertoire of additional transcription factors has been provided, which can be functionally validated and used in designing a suitable genetic intervention strategy towards enhanced production of podophyllotoxin.


Subject(s)
Gene Expression Profiling , Podophyllotoxin/biosynthesis , Podophyllum/genetics , Transcription Factors/genetics , Computer Simulation , Gene Expression Regulation, Plant , Genes, Plant , Plant Shoots/genetics , Promoter Regions, Genetic/genetics , RNA, Messenger/genetics , RNA, Messenger/metabolism , Real-Time Polymerase Chain Reaction , Reproducibility of Results , Rhizome/genetics , Secondary Metabolism/genetics , Species Specificity , Transcription Factors/metabolism , Transcriptome/genetics
16.
Comput Biol Med ; 78: 42-48, 2016 11 01.
Article in English | MEDLINE | ID: mdl-27658260

ABSTRACT

Plant disease outbreak is increasing rapidly around the globe and is a major cause for crop loss worldwide. Plants, in turn, have developed diverse defense mechanisms to identify and evade different pathogenic microorganisms. Early identification of plant disease resistance genes (R genes) can be exploited for crop improvement programs. The present prediction methods are either based on sequence similarity/domain-based methods or electronically annotated sequences, which might miss existing unrecognized proteins or low similarity proteins. Therefore, there is an urgent need to devise a novel machine learning technique to address this problem. In the current study, a SVM-based tool was developed for prediction of disease resistance proteins in plants. All known disease resistance (R) proteins (112) were taken as a positive set, whereas manually curated negative dataset consisted of 119 non-R proteins. Feature extraction generated 10,270 features using 16 different methods. The ten-fold cross validation was performed to optimize SVM parameters using radial basis function. The model was derived using libSVM and achieved an overall accuracy of 91.11% on the test dataset. The tool was found to be robust and can be used for high-throughput datasets. The current study provides instant identification of R proteins using machine learning approach, in addition to the similarity or domain prediction methods.


Subject(s)
Computational Biology/methods , Disease Resistance/genetics , Plant Proteins/genetics , Plants/genetics , Support Vector Machine , Models, Statistical
17.
Mol Biol Rep ; 43(12): 1395-1409, 2016 Dec.
Article in English | MEDLINE | ID: mdl-27633652

ABSTRACT

Transcriptional regulation of picrosides biosynthesis, the iridoid glycosides of an endangered medicinal herb, Picrorhiza kurroa, is completely unknown. P. kurroa plants obtained from natural habitat accumulate higher picrosides than in-vitro cultured plants, which necessitates identification of transcription factors (TFs) regulating their differential biosynthesis. The current study investigates complete spectrum of different TF classes in P. kurroa transcriptomes and discerns their association with picrosides biosynthesis. Transcriptomes of differential picroside-I content shoots and picroside-II content roots were mined for seven classes of TFs implicated in secondary metabolism regulation in plants. Key TFs were identified through in silico transcript abundance and qPCR analysis was performed to confirm transcript levels of TFs under study in differential content tissues and genotypes. Promoter regions of key picrosides biosynthetic pathway genes were explored to hypothesize which TFs can possibly regulate target genes. A total of 131, 137, 107, 82 and 101 transcripts encoding different TFs families were identified in PKS-25, PKS-15, PKSS, PKR-25 and PKSR transcriptomes, respectively. ERF-18, bHLH-104, NAC-25, 32, 94 and SUF-4 showed elevated expression in roots (up to 37 folds) and shoots (up to 195 folds) of plants obtained from natural habitat, indicating their role as activators of picrosides biosynthesis whereas, elevated expression of WRKY-17, 40, 71 and MYB-4 in low picrosides content conditions suggested their down-regulatory role. In silico analysis of key picrosides biosynthetic pathway gene promoter regions revealed binding domains for ERF-18, NAC-25, WRKY-40 and MYB-4. Identification of candidate TFs contributing towards picrosides biosynthesis is a pre-requisite for designing appropriate metabolic engineering strategies aimed at enhancing picrosides content in vitro and in vivo.


Subject(s)
Cinnamates/metabolism , Iridoid Glucosides/metabolism , Picrorhiza/genetics , Plant Proteins/genetics , Transcription Factors/genetics , Biosynthetic Pathways , Gene Expression Profiling , Gene Expression Regulation, Plant , Picrorhiza/metabolism , Plant Proteins/metabolism , Plant Roots/genetics , Plant Roots/metabolism , Plants, Medicinal/genetics , Plants, Medicinal/metabolism , Promoter Regions, Genetic , Sequence Analysis, DNA , Transcription Factors/metabolism , Transcriptome
18.
Sci Rep ; 6: 29750, 2016 07 15.
Article in English | MEDLINE | ID: mdl-27418367

ABSTRACT

In the current study, we asked how the supply of immediate biosynthetic precursors i.e. cinnamic acid (CA) and catalpol (CAT) influences the synthesis of picroside-I (P-I) in shoot cultures of P. kurroa. Our results revealed that only CA and CA+CAT stimulated P-I production with 1.6-fold and 4.2-fold, respectively at 2.5 mg/100 mL concentration treatment. Interestingly, feeding CA+CAT not only directed flux towards p-Coumaric acid (p-CA) production but also appeared to trigger the metabolic flux through both shikimate/phenylpropanoid and iridoid pathways by utilizing more of CA and CAT for P-I biosynthesis. However, a deficiency in the supply of either the iridoid or the phenylpropanoid precursor limits flux through the respective pathways as reflected by feedback inhibition effect on PAL and decreased transcripts expressions of rate limiting enzymes (DAHPS, CM, PAL, GS and G10H). It also appears that addition of CA alone directed flux towards both p-CA and P-I production. Based on precursor feeding and metabolic fluxes, a current hypothesis is that precursors from both the iridoid and shikimate/phenylpropanoid pathways are a flux limitation for P-I production in shoot cultures of P. kurroa plants. This work thus sets a stage for future endeavour to elevate production of P-I in cultured plant cells.


Subject(s)
Cinnamates/metabolism , Iridoid Glucosides/metabolism , Picrorhiza/metabolism , Plant Shoots/metabolism , Biosynthetic Pathways/genetics , Feedback, Physiological , Gene Expression Regulation, Plant , Picrorhiza/genetics , Plant Proteins/genetics , Plant Proteins/metabolism , Plant Shoots/genetics , Tissue Culture Techniques
19.
PLoS One ; 11(5): e0155321, 2016.
Article in English | MEDLINE | ID: mdl-27195694

ABSTRACT

In current study isolates of two native microalgae species were screened on the basis of growth kinetics and lipid accumulation potential. On the basis of data obtained on growth parameters and lipid accumulation, it is concluded that Scenedesmus dimorphus has better potential as biofuel feedstock. Two of the isolates of Scenedesmus dimorphus performed better than other isolates with respect to important growth parameters with lipid content of ~30% of dry biomass. Scenedesmus dimorphus was found to be more suitable as biodiesel feedstock candidate on the basis of cumulative occurrence of five important biodiesel fatty acids, relative occurrence of SFA (53.04%), MUFA (23.81%) and PUFA (19.69%), and more importantly that of oleic acid in its total lipids. The morphological observations using light and Scanning Electron Microscope and molecular characterization using amplified 18S rRNA gene sequences of microalgae species under study were also performed. Amplified 18S rRNA gene fragments of the microalgae species were sequenced, annotated at the NCBI website and phylogenetic analysis was done. We have published eight 18S rRNA gene sequences of microalgae species in NCBI GenBank.


Subject(s)
Biofuels , Scenedesmus/metabolism , Biomass , DNA/chemistry , DNA Primers , Fatty Acids , Fatty Acids, Unsaturated/chemistry , Gas Chromatography-Mass Spectrometry , India , Kinetics , Lipids/chemistry , Microalgae/growth & development , Microalgae/metabolism , Microscopy, Electron, Scanning , Phylogeny , Polymerase Chain Reaction , RNA, Ribosomal, 18S/chemistry , Scenedesmus/growth & development
20.
Plant Cell Rep ; 35(8): 1601-15, 2016 Aug.
Article in English | MEDLINE | ID: mdl-27038441

ABSTRACT

KEY MESSAGE: Expression analysis of primary and secondary metabolic pathways genes vis-à-vis shoot regeneration revealed developmental regulation of picroside-I biosynthesis in Picrorhiza kurroa. Picroside-I (P-I) is an important iridoid glycoside used in several herbal formulations for treatment of various disorders. P-I is synthesized in shoots of Picrorhiza kurroa and Picrorhiza scrophulariiflora. Current study reports on understanding P-I biosynthesis in different morphogenetic stages, viz. plant segment (PS), callus initiation (CI), callus mass (CM), shoot primordia (SP), multiple shoots (MS) and fully developed (FD) stages of P. kurroa. Expression analysis of genes involved in primary and secondary metabolism revealed that genes encoding HMGR, PMK, DXPS, ISPE, GS, G10H, DAHPS and PAL enzymes of MVA, MEP, iridoid and shikimate/phenylpropanoid pathways showed significant modulation of expression in SP, MS and FD stages in congruence with P-I content compared to CM stage. While HK, PK, ICDH, MDH and G6PDH showed high expression in MS and FD stages of P. kurroa, RBA, HisK and CytO showed high expression with progress in regeneration of shoots. Quantitative expression analysis of secondary metabolism genes at two temperatures revealed that 7 genes HMGR, PMK, DXPS, GS, G10H, DAHPS and PAL showed high transcript abundance (32-87-folds) in FD stage derived from leaf and root segments at 15 °C compared to 25 °C in P. kurroa. Further screening of these genes at species level showed high expression pattern in P. kurroa (6-19-folds) vis-à-vis P. scrophulariiflora that was in corroboration with P-I content. Therefore, current study revealed developmental regulation of P-I biosynthesis in P. kurroa which would be useful in designing a suitable genetic intervention study by targeting these genes for enhancing P-I production.


Subject(s)
Biosynthetic Pathways , Cinnamates/metabolism , Iridoid Glucosides/metabolism , Picrorhiza/metabolism , Plant Shoots/physiology , Regeneration , Biosynthetic Pathways/genetics , Gene Expression Regulation, Developmental , Gene Expression Regulation, Plant , Genes, Plant , Metabolic Networks and Pathways/genetics , Picrorhiza/genetics , Picrorhiza/growth & development , Plant Shoots/growth & development , RNA, Messenger/genetics , RNA, Messenger/metabolism , Regeneration/genetics , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL
...