Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 34
Filter
Add more filters










Publication year range
1.
Protoplasma ; 260(2): 453-466, 2023 Mar.
Article in English | MEDLINE | ID: mdl-35767110

ABSTRACT

Picrorhiza kurroa Royle ex Benth is a valuable medicinal herb of North-Western Himalayas due to presence of two major bioactive compounds, picroside-I and picroside-II used in the preparation of several hepatoprotective herbal drugs. These compounds accumulate in stolons/rhizomes; however, biosynthesized in different organs, viz., picroside-I in shoots and picroside-II in roots. As of today, no information exists on what transporters are transporting these metabolites from shoots and roots to the final storage organ, stolon, which ultimately transforms into rhizome. The ATP-binding cassette (ABC) transporters are reported to transport majority of secondary metabolites, including terpenoids in plants, therefore, we mined P. kurroa transcriptomes to identify and shortlist potential candidates. A total of 99 ABC transporter-encoding transcripts were identified in 3 differential transcriptomes, PKSS (shoots), PKSTS (stolons), and PKSR (roots) of P. kurroa, based on in silico comparative analysis and transcript abundance. 15 of these transcripts were further validated for their association using qRT-PCR in shoots, roots and stolon tissues in P. kurroa accessions varying for picroside-I and picroside-II contents. Organ-specific expression analysis revealed that PkABCA1, PkABCG1, and PkABCB5 had comparatively elevated expression in shoots; PkABCB2 and PkABCC2 in roots; PkABCB3 and PkABCC1 in stolon tissues of P. kurroa. Co-expression network analysis using ABC genes as hubs further unravelled important interactions with additional components of biosynthetic machinery. Our study has provided leads, first to our knowledge as of today, on putative ABC transporters possibly involved in long distance and local transport of picrosides in P. kurroa organs, thus opening avenues for designing a suitable genetic intervention strategy.


Subject(s)
Picrorhiza , Plants, Medicinal , Plants, Medicinal/genetics , Plants, Medicinal/metabolism , Transcriptome/genetics , Picrorhiza/genetics , Picrorhiza/chemistry , Picrorhiza/metabolism , ATP-Binding Cassette Transporters/genetics , ATP-Binding Cassette Transporters/metabolism , Gene Expression Profiling
2.
Bioorg Med Chem ; 73: 117009, 2022 11 01.
Article in English | MEDLINE | ID: mdl-36126446

ABSTRACT

Nucleic acid amplification technique (NAAT)-assisted detection is the primary intervention for pathogen molecular diagnostics. However, NAATs such as quantitative real-time polymerase chain reaction (qPCR) require prior purification or extraction of target nucleic acid from the sample of interest since the latter often contains polymerase inhibitors. Similarly, genetic disease screening is also reliant on the successful extraction of pure patient genomic DNA from the clinical sample. However, such extraction techniques traditionally utilize spin-column techniques that in turn require centralized high-speed centrifuges. This hinders any potential deployment of qPCR- or PCR-like NAAT methods in resource-constrained settings. The development of instrument-free nucleic acid extraction methods, especially those utilizing readily available materials would be of great interest and benefit to NAAT-mediated molecular diagnosis workflows in resource-constrained settings. In this report, we screened medical-grade cotton, a readily available over-the-counter biomaterial to extract genomic DNA (gDNA) spiked in 30 %, 45 %, and 60 % serum or cell lysate. The extraction was carried out in a completely instrument-free manner using cotton and a sterilized toothpick and was completed in 30 min (with using chaotropic salt) or 10 min (without using chaotropic salt). The quality of the extracted DNA was then probed using PCR followed by agarose gel analysis for preliminary validation of the study. The qPCR experiments then quantitatively established the extraction efficiency (0.3-27 %, depending on serum composition). Besides, percent similarity score obtained from the Sanger sequencing experiments probed the feasibility of extracted DNA towards polymerase amplification with fluorescent nucleotide incorporation. Overall, our method demonstrated that DNA extraction could be performed utilizing toothpick-mounted cotton both with or without using a chaotropic salt, albeit with a difference in the quality of the extracted DNA.


Subject(s)
Nucleic Acids , Biocompatible Materials , DNA/genetics , Humans , Nucleic Acids/analysis , Nucleotides , Real-Time Polymerase Chain Reaction/methods , Sepharose
3.
Mol Biol Rep ; 49(6): 5567-5576, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35581509

ABSTRACT

BACKGROUND: Picrorhiza kurroa has been reported as an age-old ayurvedic hepato-protection to treat hepatic disorders due to the presence of iridoids such as picroside-II (P-II), picroside-I, and kutkoside. The acylation of catalpol and vanilloyl coenzyme A by acyltransferases (ATs) is critical step in P-II biosynthesis. Since accumulation of P-II occurs only in roots, rhizomes and stolons in comparison to leaves uprooting of this critically endangered herb has been the only source of this compound. Recently, we reported that P-II acylation likely happen in roots, while stolons serve as the vital P-II storage compartment. Therefore, developing an alternate engineered platform for P-II biosynthesis require identification of P-II specific AT/s. METHODS AND RESULTS: In that direction, egg-NOG function annotated 815 ATs from de novo RNA sequencing of tissue culture based 'shoots-only' system and nursery grown shoots, roots, and stolons varying in P-II content, were cross-compared in silico to arrive at ATs sequences unique and/or common to stolons and roots. Verification for organ and accession-wise upregulation in gene expression of these ATs by qRT-PCR has shortlisted six putative 'P-II-forming' ATs. Further, six-frame translation, ab initio protein structure modelling and protein-ligand molecular docking of these ATs signified one MBOAT domain containing AT with preferential binding to the vanillic acid CoA thiol ester as well as with P-II, implying that this could be potential AT decorating final structure of P-II. CONCLUSIONS: Organ-wise comparative transcriptome mining coupled with reverse transcription real time qRT-PCR and protein-ligand docking led to the identification of an acyltransferases, contributing to the final structure of P-II.


Subject(s)
Picrorhiza , Plants, Medicinal , Acyltransferases/genetics , Acyltransferases/metabolism , Cinnamates/metabolism , Glycosides , Iridoid Glucosides/metabolism , Iridoids/metabolism , Ligands , Molecular Docking Simulation , Picrorhiza/genetics , Picrorhiza/metabolism , Plants, Medicinal/genetics , Plants, Medicinal/metabolism
4.
Genomics ; 113(5): 3381-3394, 2021 09.
Article in English | MEDLINE | ID: mdl-34332040

ABSTRACT

Picrorhiza kurroa is a medicinal herb rich in hepatoprotective iridoid glycosides, picroside-I (P-I) and picroside-II (P-II). The biosynthetic machinery of picrosides is poorly understood, therefore, 'no-direction' gene co-expression networks were used to extract linked/closed and separated interactions in terpenoid glycosides-specific sub-networks. Transcriptomes generated from different organs, varying for P-I and P-II contents such as shoots grown at 15 and 25 °C and nursery-grown shoots, stolons, and roots resulted in 47,726, 44,958, 40,117, 66,979, and 55,578 annotated transcripts, respectively. Occurrence of 2810 ± 136 nodes and 15,626 ± 696 edges in these networks indicated intense, co-expressed, closed loop interactions. Either deregulation/inhibition of abscisic acid (ABA) biosynthesis/signaling or constitutive degradation of ABA resulted in organ-specific accumulation of P-I and P-II. Biosynthesis, condensation and glucosylation of isoprene units may occur in shoots, roots or stolons; but addition of phenylpropanoid moiety and further modification/s of the iridoid backbone occurs mainly inside vacuoles in roots.


Subject(s)
Picrorhiza , Gene Expression Profiling , Genes, Plant , Iridoid Glycosides/metabolism , Picrorhiza/genetics , Picrorhiza/metabolism , Transcriptome
5.
Sci Rep ; 8(1): 2584, 2018 02 02.
Article in English | MEDLINE | ID: mdl-29396504

ABSTRACT

A correction to this article has been published and is linked from the HTML version of this paper. The error has been fixed in the paper.

6.
3 Biotech ; 8(1): 64, 2018 Jan.
Article in English | MEDLINE | ID: mdl-29354375

ABSTRACT

The low seed yield of Jatropha curcas has been a stumbling block in realizing its full potential as an ideal bioenergy crop. Low female to male flower ratio is considered as a major limiting factor responsible for low seed yield in Jatropha. An exogenous cytokinin application was performed on floral meristems to increase the seed yield. This resulted in an increase of total flowers count with a higher female to male flower ratio. However, the seed biomass did not increase in the same proportion. The possible reason for this was hypothesized to be the lack of increased photosynthesis efficiency at source tissues which could fulfil the increased demand of photosynthates and primary metabolites in maturing seeds. After cytokinin application, possible molecular mechanisms underlying carbon capture and flux affected between the source and sink in developing flowers, fruits and seeds were investigated. Comparative transcriptome analysis was performed on inflorescence meristems (treated with cytokinin) and control (untreated inflorescence meristems) at time intervals of 15 and 30 days, respectively. KEGG-based functional annotation identified various metabolic pathways associated with carbon capture and flux. Pathways such as photosynthesis, carbon fixation, carbohydrate metabolism and nitrogen metabolism were upregulated after 15 days of cytokinin treatment; however, those were downregulated after 30 days. Five genes FBP, SBP, GS, GDH and AGPase showed significant increase in transcript abundance after 15 days of treatment but showed a significant decrease after 30 days. These genes, after functional validation, can be suitable targets in designing a suitable genetic intervention strategy to increase overall seed yield in Jatropha.

7.
Sci Rep ; 7(1): 14604, 2017 11 06.
Article in English | MEDLINE | ID: mdl-29097749

ABSTRACT

For understanding complex biological systems, a systems biology approach, involving both the top-down and bottom-up analyses, is often required. Numerous system components and their connections are best characterised as networks, which are primarily represented as graphs, with several nodes connected at multiple edges. Inefficient network visualisation is a common problem related to transcriptomic and genomic datasets. In this article, we demonstrate an miRNA analysis framework with the help of Jatropha curcas healthy and disease transcriptome datasets, functioning as a pipeline derived from the graph theory universe, and discuss how the network theory, along with gene ontology (GO) analysis, can be used to infer biological properties and other important features of a network. Network profiling, combined with GO, correlation, and co-expression analyses, can aid in efficiently understanding the biological significance of pathways, networks, as well as a studied system. The proposed framework may help experimental and computational biologists to analyse their own data and infer meaningful biological information.


Subject(s)
Computational Biology/methods , MicroRNAs/metabolism , Gene Expression Profiling , Gene Ontology , Jatropha/metabolism , Plant Diseases , Plant Leaves/metabolism , Transcriptome
8.
Braz. j. microbiol ; 48(2): 193-195, April.-June 2017. tab
Article in English | LILACS | ID: biblio-839391

ABSTRACT

Abstract Ralstonia solanacearum is a heterogeneous species complex causing bacterial wilts in more than 450 plant species distributed in 54 families. The complexity of the genome and the wide diversity existing within the species has led to the concept of R. solanacearum species complex (RsSC). Here we report the genome sequence of the four strains (RS2, RS25, RS48 and RS75) belonging to three of the four phylotypes of R. solanacearum that cause potato bacterial wilt in India. The genome sequence data would be a valuable resource for the evolutionary, epidemiological studies and quarantine of this phytopathogen.


Subject(s)
Plant Diseases/microbiology , Solanum tuberosum/microbiology , DNA, Bacterial/chemistry , Genome, Bacterial , Sequence Analysis, DNA , Ralstonia solanacearum/genetics , Genotype , DNA, Bacterial/genetics , Ralstonia solanacearum/isolation & purification , Ralstonia solanacearum/classification , India
9.
Braz J Microbiol ; 48(2): 193-195, 2017.
Article in English | MEDLINE | ID: mdl-28041840

ABSTRACT

Ralstonia solanacearum is a heterogeneous species complex causing bacterial wilts in more than 450 plant species distributed in 54 families. The complexity of the genome and the wide diversity existing within the species has led to the concept of R. solanacearum species complex (RsSC). Here we report the genome sequence of the four strains (RS2, RS25, RS48 and RS75) belonging to three of the four phylotypes of R. solanacearum that cause potato bacterial wilt in India. The genome sequence data would be a valuable resource for the evolutionary, epidemiological studies and quarantine of this phytopathogen.


Subject(s)
DNA, Bacterial/chemistry , Genome, Bacterial , Genotype , Plant Diseases/microbiology , Ralstonia solanacearum/genetics , Sequence Analysis, DNA , Solanum tuberosum/microbiology , DNA, Bacterial/genetics , India , Ralstonia solanacearum/classification , Ralstonia solanacearum/isolation & purification
10.
Sci Rep ; 6: 29750, 2016 07 15.
Article in English | MEDLINE | ID: mdl-27418367

ABSTRACT

In the current study, we asked how the supply of immediate biosynthetic precursors i.e. cinnamic acid (CA) and catalpol (CAT) influences the synthesis of picroside-I (P-I) in shoot cultures of P. kurroa. Our results revealed that only CA and CA+CAT stimulated P-I production with 1.6-fold and 4.2-fold, respectively at 2.5 mg/100 mL concentration treatment. Interestingly, feeding CA+CAT not only directed flux towards p-Coumaric acid (p-CA) production but also appeared to trigger the metabolic flux through both shikimate/phenylpropanoid and iridoid pathways by utilizing more of CA and CAT for P-I biosynthesis. However, a deficiency in the supply of either the iridoid or the phenylpropanoid precursor limits flux through the respective pathways as reflected by feedback inhibition effect on PAL and decreased transcripts expressions of rate limiting enzymes (DAHPS, CM, PAL, GS and G10H). It also appears that addition of CA alone directed flux towards both p-CA and P-I production. Based on precursor feeding and metabolic fluxes, a current hypothesis is that precursors from both the iridoid and shikimate/phenylpropanoid pathways are a flux limitation for P-I production in shoot cultures of P. kurroa plants. This work thus sets a stage for future endeavour to elevate production of P-I in cultured plant cells.


Subject(s)
Cinnamates/metabolism , Iridoid Glucosides/metabolism , Picrorhiza/metabolism , Plant Shoots/metabolism , Biosynthetic Pathways/genetics , Feedback, Physiological , Gene Expression Regulation, Plant , Picrorhiza/genetics , Plant Proteins/genetics , Plant Proteins/metabolism , Plant Shoots/genetics , Tissue Culture Techniques
11.
PLoS One ; 11(5): e0155321, 2016.
Article in English | MEDLINE | ID: mdl-27195694

ABSTRACT

In current study isolates of two native microalgae species were screened on the basis of growth kinetics and lipid accumulation potential. On the basis of data obtained on growth parameters and lipid accumulation, it is concluded that Scenedesmus dimorphus has better potential as biofuel feedstock. Two of the isolates of Scenedesmus dimorphus performed better than other isolates with respect to important growth parameters with lipid content of ~30% of dry biomass. Scenedesmus dimorphus was found to be more suitable as biodiesel feedstock candidate on the basis of cumulative occurrence of five important biodiesel fatty acids, relative occurrence of SFA (53.04%), MUFA (23.81%) and PUFA (19.69%), and more importantly that of oleic acid in its total lipids. The morphological observations using light and Scanning Electron Microscope and molecular characterization using amplified 18S rRNA gene sequences of microalgae species under study were also performed. Amplified 18S rRNA gene fragments of the microalgae species were sequenced, annotated at the NCBI website and phylogenetic analysis was done. We have published eight 18S rRNA gene sequences of microalgae species in NCBI GenBank.


Subject(s)
Biofuels , Scenedesmus/metabolism , Biomass , DNA/chemistry , DNA Primers , Fatty Acids , Fatty Acids, Unsaturated/chemistry , Gas Chromatography-Mass Spectrometry , India , Kinetics , Lipids/chemistry , Microalgae/growth & development , Microalgae/metabolism , Microscopy, Electron, Scanning , Phylogeny , Polymerase Chain Reaction , RNA, Ribosomal, 18S/chemistry , Scenedesmus/growth & development
12.
Plant Cell Rep ; 35(8): 1601-15, 2016 Aug.
Article in English | MEDLINE | ID: mdl-27038441

ABSTRACT

KEY MESSAGE: Expression analysis of primary and secondary metabolic pathways genes vis-à-vis shoot regeneration revealed developmental regulation of picroside-I biosynthesis in Picrorhiza kurroa. Picroside-I (P-I) is an important iridoid glycoside used in several herbal formulations for treatment of various disorders. P-I is synthesized in shoots of Picrorhiza kurroa and Picrorhiza scrophulariiflora. Current study reports on understanding P-I biosynthesis in different morphogenetic stages, viz. plant segment (PS), callus initiation (CI), callus mass (CM), shoot primordia (SP), multiple shoots (MS) and fully developed (FD) stages of P. kurroa. Expression analysis of genes involved in primary and secondary metabolism revealed that genes encoding HMGR, PMK, DXPS, ISPE, GS, G10H, DAHPS and PAL enzymes of MVA, MEP, iridoid and shikimate/phenylpropanoid pathways showed significant modulation of expression in SP, MS and FD stages in congruence with P-I content compared to CM stage. While HK, PK, ICDH, MDH and G6PDH showed high expression in MS and FD stages of P. kurroa, RBA, HisK and CytO showed high expression with progress in regeneration of shoots. Quantitative expression analysis of secondary metabolism genes at two temperatures revealed that 7 genes HMGR, PMK, DXPS, GS, G10H, DAHPS and PAL showed high transcript abundance (32-87-folds) in FD stage derived from leaf and root segments at 15 °C compared to 25 °C in P. kurroa. Further screening of these genes at species level showed high expression pattern in P. kurroa (6-19-folds) vis-à-vis P. scrophulariiflora that was in corroboration with P-I content. Therefore, current study revealed developmental regulation of P-I biosynthesis in P. kurroa which would be useful in designing a suitable genetic intervention study by targeting these genes for enhancing P-I production.


Subject(s)
Biosynthetic Pathways , Cinnamates/metabolism , Iridoid Glucosides/metabolism , Picrorhiza/metabolism , Plant Shoots/physiology , Regeneration , Biosynthetic Pathways/genetics , Gene Expression Regulation, Developmental , Gene Expression Regulation, Plant , Genes, Plant , Metabolic Networks and Pathways/genetics , Picrorhiza/genetics , Picrorhiza/growth & development , Plant Shoots/growth & development , RNA, Messenger/genetics , RNA, Messenger/metabolism , Regeneration/genetics , Temperature
13.
Mol Biol Rep ; 43(4): 305-22, 2016 Apr.
Article in English | MEDLINE | ID: mdl-26878857

ABSTRACT

Jatropha curcas, has been projected as a major source of biodiesel due to high seed oil content (42 %). A major roadblock for commercialization of Jatropha-based biodiesel is low seed yield per inflorescence, which is affected by low female to male flower ratio (1:25-30). Molecular dissection of female flower development by analyzing genes involved in phase transitions and floral organ development is, therefore, crucial for increasing seed yield. Expression analysis of 42 genes implicated in floral organ development and sex determination was done at six floral developmental stages of a J. curcas genotype (IC561235) with inherently higher female to male flower ratio (1:8-10). Relative expression analysis of these genes was done on low ratio genotype. Genes TFL1, SUP, AP1, CRY2, CUC2, CKX1, TAA1 and PIN1 were associated with reproductive phase transition. Further, genes CUC2, TAA1, CKX1 and PIN1 were associated with female flowering while SUP and CRY2 in female flower transition. Relative expression of these genes with respect to low female flower ratio genotype showed up to ~7 folds increase in transcript abundance of SUP, TAA1, CRY2 and CKX1 genes in intermediate buds but not a significant increase (~1.25 folds) in female flowers, thereby suggesting that these genes possibly play a significant role in increased transition towards female flowering by promoting abortion of male flower primordia. The outcome of study has implications in feedstock improvement of J. curcas through functional validation and eventual utilization of key genes associated with female flowering.


Subject(s)
Flowers/physiology , Gene Expression Regulation, Plant , Genomics , Jatropha/physiology , Plant Proteins/genetics , Flowers/metabolism , Jatropha/metabolism
14.
J Basic Microbiol ; 56(12): 1403, 2016 12.
Article in English | MEDLINE | ID: mdl-26059280

ABSTRACT

Characterization of cellulolytic activities of newly isolated Thelephora sowerbyi from North-Western Himalayas on different lignocellulosic substrate J. Basic Microbiol. 2015, 55, 1-11 - DOI: 10.1002/jobm.201500107 The above article from the Journal of Basic Microbiology, published online on 08 June 2015 in Wiley Online Library as Early View (http://onlinelibrary.wiley.com/doi/10.1002/jobm.201500107/pdf), has been retracted by agreement between the authors, the Editor-in-Chief and Wiley-VCH GmbH & Co. KGaA. The retraction has been agreed because the microorganism studied in the described experiments has been identified as the fungus Cotylidia pannosa (Gene Accession No. KT008117) instead of Thelephora sowerbyi. The culture has been identified on the basis of the sequence of the amplified ITS region of the microorganism which was submitted by the authors to the NCBI database.

15.
3 Biotech ; 6(1): 106, 2016 Jun.
Article in English | MEDLINE | ID: mdl-28330176

ABSTRACT

Aconitum heterophyllum is an important component for various herbal drug formulations due to the occurrence of non-toxic aconites including marker compound, atisine. Despite huge pharmacological potential, the reprogramming of aconites production is limited due to lack of understanding on their biosynthesis. To address this problem, we have proposed here the complete atisine biosynthetic pathway for the first time connecting glycolysis, MVA/MEP, serine biosynthesis and diterpene biosynthetic pathways. The transcript profiling revealed phosphorylated pathway as a major contributor towards serine production in addition to repertoire of genes in glycolysis (G6PI, PFK, ALD and ENO), serine biosynthesis (PGDH and PSAT) and diterpene biosynthesis (KO and KH) sharing a similar pattern of expression (2-4-folds) in roots compared to shoots vis-à-vis atisine content (0-0.37 %). Quantification of steviol and comparative analysis of shortlisted genes between roots of high (0.37 %) vs low (0.14 %) atisine content accessions further confirmed the route of atisine biosynthesis. The results showed 6-fold increase in steviol content and 3-62-fold up-regulation of all the selected genes in roots of high content accession ascertaining their association towards atisine production. Moreover, significant positive correlations were observed between selected genes suggesting their co-expression and crucial role in atisine biosynthesis. This study, thus, offers unprecedented opportunities to explore the selected candidate genes for enhanced production of atisine in cultivated plant cells.

16.
3 Biotech ; 6(2): 152, 2016 Dec.
Article in English | MEDLINE | ID: mdl-28330224

ABSTRACT

Tuberous roots of Aconitum heterophyllum constitute storage organ for secondary metabolites, however, molecular components contributing to their formation are not known. The transcriptomes of A. heterophyllum were analyzed to identify possible genes associated with tuberous root development by taking clues from genes implicated in other plant species. Out of 18 genes, eight genes encoding GDP-mannose pyrophosphorylase (GMPase), SHAGGY, Expansin, RING-box protein 1 (RBX1), SRF receptor kinase (SRF), ß-amylase, ADP-glucose pyrophosphorylase (AGPase) and Auxin responsive factor 2 (ARF2) showed higher transcript abundance in roots (13-171 folds) compared to shoots. Comparative expression analysis of those genes between tuberous root developmental stages showed 11-97 folds increase in transcripts in fully developed roots compared to young rootlets, thereby implying their association in biosynthesis, accumulation and storage of primary metabolites towards root biomass. Cluster analysis revealed a positive correlation with the gene expression data for different stages of tuberous root formation in A. heterophyllum. The outcome of this study can be useful in genetic improvement of A. heterophyllum for root biomass yield.

17.
Plant Physiol Biochem ; 94: 253-67, 2015 Sep.
Article in English | MEDLINE | ID: mdl-26134579

ABSTRACT

The rising demand for biofuels has raised concerns about selecting alternate and promising renewable energy crops which do not compete with food supply. Jatropha (Jatropha curcas L.), a non-edible energy crop of the family euphorbiaceae, has the potential of providing biodiesel feedstock due to the presence of high proportion of unsaturated fatty acids (75%) in seed oil which is mainly accumulated in endosperm and embryo. The molecular basis of seed oil biosynthesis machinery has been studied in J. curcas, however, what genetic differences contribute to differential oil biosynthesis and accumulation in genotypes varying for oil content is poorly understood. We investigated expression profile of 18 FA and TAG biosynthetic pathway genes in different developmental stages of embryo and endosperm from high (42%) and low (30%) oil content genotypes grown at two geographical locations. Most of the genes showed relatively higher expression in endosperms of high oil content genotype, whereas no significant difference was observed in endosperms versus embryos of low oil content genotype. The promoter regions of key genes from FA and TAG biosynthetic pathways as well as other genes implicated in oil accumulation were analyzed for regulatory elements and transcription factors specific to oil or lipid accumulation in plants such as Dof, CBF (LEC1), SORLIP, GATA and Skn-1_motif etc. Identification of key genes from oil biosynthesis and regulatory elements specific to oil deposition will be useful not only in dissecting the molecular basis of high oil content but also improving seed oil content through transgenic or molecular breeding approaches.


Subject(s)
Endosperm , Fatty Acids , Genotype , Jatropha , Plant Oils/metabolism , Triglycerides , Endosperm/genetics , Endosperm/metabolism , Fatty Acids/biosynthesis , Fatty Acids/genetics , Jatropha/genetics , Jatropha/metabolism , Triglycerides/biosynthesis , Triglycerides/genetics
18.
Planta ; 242(1): 239-58, 2015 Jul.
Article in English | MEDLINE | ID: mdl-25904478

ABSTRACT

MAIN CONCLUSION: The transcriptomes of Aconitum heterophyllum were assembled and characterized for the first time to decipher molecular components contributing to biosynthesis and accumulation of metabolites in tuberous roots. Aconitum heterophyllum Wall., popularly known as Atis, is a high-value medicinal herb of North-Western Himalayas. No information exists as of today on genetic factors contributing to the biosynthesis of secondary metabolites accumulating in tuberous roots, thereby, limiting genetic interventions towards genetic improvement of A. heterophyllum. Illumina paired-end sequencing followed by de novo assembly yielded 75,548 transcripts for root transcriptome and 39,100 transcripts for shoot transcriptome with minimum length of 200 bp. Biological role analysis of root versus shoot transcriptomes assigned 27,596 and 16,604 root transcripts; 12,340 and 9398 shoot transcripts into gene ontology and clusters of orthologous group, respectively. KEGG pathway mapping assigned 37 and 31 transcripts onto starch-sucrose metabolism while 329 and 341 KEGG orthologies associated with transcripts were found to be involved in biosynthesis of various secondary metabolites for root and shoot transcriptomes, respectively. In silico expression profiling of the mevalonate/2-C-methyl-D-erythritol 4-phosphate (non-mevalonate) pathway genes for aconites biosynthesis revealed 4 genes HMGR (3-hydroxy-3-methylglutaryl-CoA reductase), MVK (mevalonate kinase), MVDD (mevalonate diphosphate decarboxylase) and HDS (1-hydroxy-2-methyl-2-(E)-butenyl 4-diphosphate synthase) with higher expression in root transcriptome compared to shoot transcriptome suggesting their key role in biosynthesis of aconite alkaloids. Five genes, GMPase (geranyl diphosphate mannose pyrophosphorylase), SHAGGY, RBX1 (RING-box protein 1), SRF receptor kinases and ß-amylase, implicated in tuberous root formation in other plant species showed higher levels of expression in tuberous roots compared to shoots. A total of 15,487 transcription factors belonging to bHLH, MYB, bZIP families and 399 ABC transporters which regulate biosynthesis and accumulation of bioactive compounds were identified in root and shoot transcriptomes. The expression of 5 ABC transporters involved in tuberous root development was validated by quantitative PCR analysis. Network connectivity diagrams were drawn for starch-sucrose metabolism and isoquinoline alkaloid biosynthesis associated with tuberous root growth and secondary metabolism, respectively, in root transcriptome of A. heterophyllum. The current endeavor will be of practical importance in planning a suitable genetic intervention strategy for the improvement of A. heterophyllum.


Subject(s)
Aconitum/genetics , Genes, Plant , High-Throughput Nucleotide Sequencing/methods , Plant Tubers/genetics , Secondary Metabolism/genetics , Transcriptome/genetics , DNA, Complementary/genetics , Exons/genetics , Gene Expression Profiling , Gene Expression Regulation, Plant , Gene Ontology , Microsatellite Repeats/genetics , Molecular Sequence Annotation , Peptides/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Plant Shoots/genetics , Plant Tubers/growth & development , RNA, Messenger/genetics , RNA, Messenger/metabolism , Real-Time Polymerase Chain Reaction , Reproducibility of Results , Starch/metabolism , Sucrose/metabolism , Transcription Factors/metabolism
20.
Planta ; 241(5): 1255-68, 2015 May.
Article in English | MEDLINE | ID: mdl-25663583

ABSTRACT

MAIN CONCLUSION: This study is the first endeavor on mining of miRNAs and analyzing their involvement in development and secondary metabolism of an endangered medicinal herb Picrorhiza kurroa (P. kurroa ). miRNAs are ubiquitous non-coding RNA species that target complementary sequences of mRNA and result in either translational repression or target degradation in eukaryotes. The role of miRNAs has not been investigated in P. kurroa which is a medicinal herb of industrial value due to the presence of secondary metabolites, picroside-I and picroside-II. Computational identification of miRNAs was done in 6 transcriptomes of P. kurroa generated from root, shoot, and stolon organs varying for growth, development, and culture conditions. All available plant miRNA entries were retrieved from miRBase and used as backend datasets to computationally identify conserved miRNAs in transcriptome data sets. Total 18 conserved miRNAs were detected in P. kurroa followed by target prediction and functional annotation which suggested their possible role in controlling various biological processes. Validation of miRNA and expression analysis by qRT-PCR and 5' RACE revealed that miRNA-4995 has a regulatory role in terpenoid biosynthesis ultimately affecting the production of picroside-I. miR-5532 and miR-5368 had negligible expression in field-grown samples as compared to in vitro-cultured samples suggesting their role in regulating P. kurroa growth in culture conditions. The study has thus identified novel functions for existing miRNAs which can be further validated for their potential regulatory role.


Subject(s)
Genes, Plant , MicroRNAs/genetics , Picrorhiza/genetics , Transcriptome , Gene Expression Profiling , Picrorhiza/growth & development , Picrorhiza/metabolism , Real-Time Polymerase Chain Reaction
SELECTION OF CITATIONS
SEARCH DETAIL
...