Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Ovarian Res ; 15(1): 12, 2022 Jan 20.
Article in English | MEDLINE | ID: mdl-35057823

ABSTRACT

BACKGROUND: The five-year overall survival (OS) of advanced-stage ovarian cancer remains nearly 25-35%, although several treatment strategies have evolved to get better outcomes. A considerable amount of heterogeneity and complexity has been seen in ovarian cancer. This study aimed to establish gene signatures that can be used in better prognosis through risk prediction outcome for the survival of ovarian cancer patients. Different studies' heterogeneity into a single platform is presented to explore the penetrating genes for poor or better survival. The integrative analysis of multiple data sets was done to determine the genes that influence poor or better survival. A total of 6 independent data sets was considered. The Cox Proportional Hazard model was used to obtain significant genes that had an impact on ovarian cancer patients. The gene signatures were prepared by splitting the over-expressed and under-expressed genes parallelly by the variable selection technique. The data visualisation techniques were prepared to predict the overall survival, and it could support the therapeutic regime. RESULTS: We preferred to select 20 genes in each data set as upregulated and downregulated. Irrespective of the selection of multiple genes, not even a single gene was found common among data sets for the survival of ovarian cancer patients. However, the same analytical approach adopted. The chord plot was presented to make a comprehensive understanding of the outcome. CONCLUSIONS: This study helps us to understand the results obtained from different studies. It shows the impact of the heterogeneity from one study to another. It shows the requirement of integrated studies to make a holistic view of the gene signature for ovarian cancer survival.


Subject(s)
Ovarian Neoplasms/genetics , Biomarkers, Tumor/genetics , Cluster Analysis , Female , Gene Expression Regulation, Neoplastic , Humans , Ovarian Neoplasms/mortality , Prognosis , Proportional Hazards Models , Survival Analysis
2.
Article in English | MEDLINE | ID: mdl-23732620

ABSTRACT

Fe doped ZnS nanoparticles (Zn1-xFexS; where x=0.00, 0.03, 0.05 and 0.10) were synthesized by a chemical precipitation method. The synthesized products were characterized by X-ray diffraction, scanning electron microscope, transmission electron microscope, UV-Vis and photoluminescence spectrometer. The X-ray diffraction and transmission electron microscope studies show that the size of crystallites is in the range of 2-5 nm. Photocatalytic activities of ZnS and 3, 5 and 10 mol% Fe doped ZnS were evaluated by decolorization of methylene blue in aqueous solution under ultraviolet and visible light irradiation. It was found that the Fe doped ZnS bleaches methylene blue much faster than the undoped ZnS upon its exposure to the visible light as compared to ultraviolet light. The optimal Fe/Zn ratio was observed to be 3 mol% for photocatalytic applications.


Subject(s)
Iron/chemistry , Methylene Blue/chemistry , Methylene Blue/radiation effects , Nanoparticles/chemistry , Photolysis , Sulfides/chemistry , Zinc Compounds/chemistry , Catalysis/radiation effects , Crystallization , Nanoparticles/ultrastructure , Particle Size , Photolysis/radiation effects , Photons , Spectrometry, X-Ray Emission , Spectrophotometry, Ultraviolet , Thermodynamics , Time Factors , Ultraviolet Rays , X-Ray Diffraction
3.
Article in English | MEDLINE | ID: mdl-22958977

ABSTRACT

Mn-doped TiO(2) nanoparticles (Ti(1-)(x)Mn(x)O(2); where x=0.00-0.10) were synthesized by sol-gel method. The synthesized products were characterized by X-ray diffraction (XRD), scanning electron microscope (SEM), transmission electron microscope (TEM) and UV-Vis spectrometer. The SEM and TEM micrographs revealed the agglomerated spherical-like morphology and measurements show that the size of crystallites is in the range of 10-20 nm. Optical measurements indicated a red shift in the absorption band edge after Mn doping. Direct allowed band gap of undoped and Mn-doped TiO(2) nanoparticles measured by UV-Vis spectrometer were 3.00 and 2.95 eV at 300 °C, respectively. Photocatalytic activities of TiO(2) and Mn doped TiO(2) were evaluated by irradiating the sample solution of methylene blue (MB) dye under ultraviolet and visible light exposure. It was found that Mn-doped TiO(2) bleaches MB much faster than undoped TiO(2) upon its exposure to the visible light as comparison to ultraviolet light. The experiment demonstrated that the photodegradation efficiency of Mn-doped TiO(2) was significantly higher than that of undoped TiO(2) upon its exposure to visible light.


Subject(s)
Manganese/chemistry , Methylene Blue/chemistry , Nanoparticles/chemistry , Photolysis , Titanium/chemistry , Catalysis , Light , Nanoparticles/ultrastructure , Spectrophotometry, Ultraviolet , Ultraviolet Rays , X-Ray Diffraction
SELECTION OF CITATIONS
SEARCH DETAIL
...