Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Phytoremediation ; 26(9): 1486-1499, 2024.
Article in English | MEDLINE | ID: mdl-38555862

ABSTRACT

The present study illustrated that Salix alba can accumulate high level of Pb and Cd in different plant parts, with maximum accumulation in roots followed by stem and leaves in the order Cd > Pb > Cd + Pb. The phytoremediation evaluation factors such as bioconcentration factor (BCF) and translocation factor (TF) was higher for Cd over Pb in all plant parts, further the BCF for both Pb and Cd was maximum in root (BCF > 1) followed by stem and leaves. Higher accumulation of Cd over the Pb was observed inside the plant tissues due to Cd mimics with other elements and gets transported through respective transporters. The combined treatment of Pb and Cd affected the bioaccumulation at every treatment level suggesting the negative effect among both elements. Higher survival rate (>85%) was recorded up to 200mgPb/kg and 15mgCd/kg, while further increase in metal concentration reduced the plant efficiency to remediate contaminated soils, hence results in declined survival rate. The FTIR analysis revealed that Pb and Cd accumulation in plants induced changes in carboxy, amino, hydroxyl and phosphate groups that ultimately caused alteration in physiological and biochemical processes of plant and thus provided an insight to the interaction, binding and accumulation of heavy metals.


The present study conferred that Salix alba is a heavy metal (Pb and Cd) excluder plant on the basis of phytoremediation efficiency evaluation factors such BCF >1 (root) and TF <1. The correlation studies suggested the negative correlation among Pb and Cd accumulation and morphological traits. Physiological studies indicated that Pb and Cd accumulation negatively affect chlorophyll concentration and the antioxidant mechanism of plants gets activated, further these results are confirmed with FTIR studies, which reported the alteration in functional groups and associated compounds in plant tissues under Pb and Cd stress.


Subject(s)
Biodegradation, Environmental , Cadmium , Lead , Salix , Soil Pollutants , Soil Pollutants/metabolism , Salix/metabolism , Cadmium/metabolism , Lead/metabolism , Metals, Heavy/metabolism , Plant Roots/metabolism , Plant Leaves/metabolism , Soil/chemistry
2.
PLoS One ; 13(11): e0207121, 2018.
Article in English | MEDLINE | ID: mdl-30418991

ABSTRACT

The genetic diversity and growth dynamics of fifty-three half-sib families of eleven provenance sources and one bulk seed mixed population of fast growing forest tree species i.e. Melia azedarach were studied at two stand ages viz., fourth year (mid-rotation) and eighth year (end-rotation) to determine the selection stage in northern India. Significant variations were reported between and within seed provenances in all growth characters at both rotational ages. The broad sense heritability was higher at mid-rotational age. This revealed the growth is genetically controlled but with the time environmental effects escort the growth pattern. Growth pattern was different at each stand age. Growth is diameter dependent and the pattern was crown growth type. Families maintained their superiority over the time for tree height, basal diameter and diameter at breast height, which indicated a strong potential to identify good performing families for future plantation program. This study concluded that early stage selection is appropriate that later stage selection for all parameters studied except clear bole height that is much influenced by management practice and environment factors also. Neighbor-joining clustering with similarity index revealed that it is not necessary that the families, originated in one region were distributed in one cluster, indicating that families with same geographic origin could have undergone changes for different characters under selection.


Subject(s)
Melia azedarach/growth & development , Melia azedarach/genetics , Biodiversity , Forestry , Genetic Variation , Melia azedarach/anatomy & histology , Models, Biological , Seeds , Trees/anatomy & histology , Trees/genetics , Trees/growth & development
3.
Phys Rev E ; 96(1-1): 012305, 2017 Jul.
Article in English | MEDLINE | ID: mdl-29347135

ABSTRACT

We propose a discrete-time dynamic network model describing the spread of susceptible-infective-recovered diseases in a population. We consider the case in which the nodes in the network change their links due to social mixing dynamics as well as in response to the disease. The model shows the behavior that, as we increase social mixing, disease spread is inhibited in certain cases, while in other cases it is enhanced. We also extend this dynamic network model to take into account the case of hidden infection. Here we find that, as expected, the disease spreads more readily if there is a time period after contracting the disease during which an individual is infective but is not known to have the disease.


Subject(s)
Communicable Diseases/epidemiology , Epidemics , Models, Biological , Computer Simulation , Disease Susceptibility , Humans , Social Behavior , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...