Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Arthritis Res Ther ; 21(1): 6, 2019 01 07.
Article in English | MEDLINE | ID: mdl-30612588

ABSTRACT

BACKGROUND: Fibroblast-like synoviocytes (FLS) and CCR7- effector memory T (TEM) cells are two of the major cell types implicated in the progression of rheumatoid arthritis (RA). In particular, FLS become highly invasive, whereas TEM cells proliferate and secrete proinflammatory cytokines, during RA. FLS and T cells may also interact and influence each other's phenotypes. Inhibition of the pathogenic phenotypes of both FLS and TEM cells can be accomplished by selectively blocking the predominant potassium channels that they upregulate during RA: KCa1.1 (BK, Slo1, MaxiK, KCNMA1) upregulated by FLS and Kv1.3 (KCNA3) upregulated by activated TEM cells. In this study, we investigated the roles of KCa1.1 and Kv1.3 in regulating the interactions between FLS and TEM cells and determined if combination therapies of KCa1.1- and Kv1.3-selective blockers are more efficacious than monotherapies in ameliorating disease in rat models of RA. METHODS: We used in vitro functional assays to assess the effects of selective KCa1.1 and Kv1.3 channel inhibitors on the interactions of FLS isolated from rats with collagen-induced arthritis (CIA) with syngeneic TEM cells. We also used flow cytometric analyses to determine the effects of KCa1.1 blockers on the expression of proteins used for antigen presentation on CIA-FLS. Finally, we used the CIA and pristane-induced arthritis models to determine the efficacy of combinatorial therapies of KCa1.1 and Kv1.3 blockers in reducing disease severity compared with monotherapies. RESULTS: We show that the interactions of FLS from rats with CIA and of rat TEM cells are regulated by KCa1.1 and Kv1.3. Inhibiting KCa1.1 on FLS reduces the ability of FLS to stimulate TEM cell proliferation and migration, and inhibiting Kv1.3 on TEM cells reduces TEM cells' ability to enhance FLS expression of KCa1.1 and major histocompatibility complex class II protein, as well as stimulates their invasion. Furthermore, we show that combination therapies of selective KCa1.1 and Kv1.3 blockers are more efficacious than monotherapies at reducing signs of disease in two rat models of RA. CONCLUSIONS: Our results demonstrate the importance of KCa1.1 and Kv1.3 in regulating FLS and TEM cells during RA, as well as the value of combined therapies targeting both of these cell types to treat RA.


Subject(s)
Arthritis, Experimental/metabolism , Fibroblasts/metabolism , Kv1.3 Potassium Channel/physiology , Large-Conductance Calcium-Activated Potassium Channel alpha Subunits/physiology , Synoviocytes/metabolism , T-Lymphocytes/metabolism , Animals , Arthritis, Experimental/diagnostic imaging , Arthritis, Rheumatoid/diagnostic imaging , Arthritis, Rheumatoid/metabolism , Cells, Cultured , Female , HEK293 Cells , Humans , Rats , Rats, Inbred Lew
2.
J Pept Sci ; 24(3)2018 Mar.
Article in English | MEDLINE | ID: mdl-29430772

ABSTRACT

Diastereoselective addition of nitromethane to Boc-D-Phe-H in the presence of sodium hydride in diethyl ether/hexane containing 15-crown-5 and subsequent N,O-protection with 2,2-dimethoxypropane gave trans-oxazolidine in a diastereomeric ratio of >16:1. The oxazolidine was easily separated by column chromatography, which after Nef reaction was coupled to H-Leu-OtBu. The 8-step synthesis afforded (-)-bestatin in an overall yield of 24.7% after deprotection and ion exchange.


Subject(s)
Leucine/analogs & derivatives , Chromatography, High Pressure Liquid , Leucine/chemical synthesis , Leucine/chemistry , Molecular Structure , Stereoisomerism
4.
J Pept Sci ; 13(11): 756-61, 2007 Nov.
Article in English | MEDLINE | ID: mdl-17803258

ABSTRACT

Iodination of the conserved 2-tyrosine (Tyr(2)) residue in the pressin and tocin rings of arginine- or lysine-vasopressin (AVP or LVP), and oxytocin, respectively, impairs binding to their respective receptors. Synthetic antagonists that have their Tyr(2) either replaced by another amino acid or irreversibly blocked by an O-methyl or O-ethyl ether, but have, instead, an iodinatable phenol moiety outside the pressin/tocin ring, are used for radiolabeling. We explored another approach to avoid iodinating Tyr(2) by capping this residue with a reversible O-acetyl group, incorporated during peptide synthesis. The O-acetyl-Tyr(2) LVP peptide, with a free iodinatable tyrosine attached to the epsilon-amine of 8-lysine, is iodinated at a neutral pH and purified by reverse-phase high-pressure liquid chromatography (HPLC) at an acidic pH, conditions under which the O-acetyl groups are stable. Deacetylation with hydroxylamine is selective, and leaves intact the disulfide bridge. The marked shortening of the HPLC retention time after deblocking produces a chemically homogeneous label, iodinated exclusively on the free tyrosine residue attached to the epsilon-amine of LVP. Hitherto, this (125)I labeled vasopressin agonist could be obtained only in low yield, via conjugation labeling with iodinated N-t-Boc-tyrosine succinimidyl ester. This fully reversible tyrosine protection strategy does not require special equipment, and retains the conserved Tyr(2), typical of vasopressin and oxytocin agonists.


Subject(s)
Halogenation , Tyrosine/chemistry , Vasopressins/chemistry , Amino Acid Sequence , Animals , COS Cells , Chlorocebus aethiops , Humans , Iodine Radioisotopes/chemistry , Molecular Sequence Data , Oxytocin/chemistry , Peptides/chemical synthesis , Peptides/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...