Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Nanomaterials (Basel) ; 10(9)2020 Sep 03.
Article in English | MEDLINE | ID: mdl-32899246

ABSTRACT

Waterlogged wooden artifacts represent an important historical legacy of our past. They are very fragile, especially due to the severe phenomenon of acidification that may occur in the presence of acid precursors. To date, a satisfactory solution for the deacidification of ancient wood on a large scale has still not been found. In this paper, we propose, for the first time, eco-friendly curative and preventive treatments using nanoparticles (NPs) of earth alkaline hydroxides dispersed in water and produced on a large scale. We present the characterization of the NPs (by X-ray diffraction, atomic-force and electron microscopy, and small-angle neutron scattering), together with the study of the deacidification efficiency of our treatments. We demonstrate that all our treatments are very effective for both curative and preventive aims, able to assure an almost neutral or slightly alkaline pH of the treated woods. Furthermore, the use of water as a solvent paves the way for large-scale and eco-friendly applications which avoid substances that are harmful for the environment and for human health.

2.
Magn Reson Chem ; 58(9): 820-829, 2020 09.
Article in English | MEDLINE | ID: mdl-32167622

ABSTRACT

Conservation treatment of degraded archaeological osseous materials is still an open challenge, since no specific conservation protocol is currently available for restorers or museum curators. This work aims to test the efficiency of two original consolidant solutions in consolidating archaeological material. Archaeological osseous materials remain rare and sparsely available, it is a real drawback for optimization of conservation treatments, therefore in the present work a set of representative samples was chosen. The consolidants tested were a solution of disodium sebacate and a novel polyalcohol (SG1.2) obtained by esterification of 5 succinic diacids with 6 molecules of glycerol at 150°C. Characterization studies of archaeological bones, combining SEM microscopy, IR spectroscopy and high-resolution solid-state 13 C NMR investigations, have been carried out to assess the effective permeation of bone by the consolidant solutions and to determine their chemical interactions with the residual components of archaeological bones. Although both water solutions significantly impregnate bone, we show that, the solution with disodium sebacate leads to chemical attack on the mineral component due to preferential precipitation of endogenous calcium by the sebacate ions. Such deleterious behaviour is not observed at all with the SG1,2 chemicals. The added value of the polyalcohol treatment as strengthening agent suitable for archaeological bony materials should be further demonstrated by mechanical and ageing tests.

SELECTION OF CITATIONS
SEARCH DETAIL
...