Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Int ; 144: 106058, 2020 11.
Article in English | MEDLINE | ID: mdl-32890885

ABSTRACT

Since the 2000s, increased aircraft noise annoyance has been observed in the populations living near airports. The DEBATS-study compared the exposure-response relationship estimated among airports' residents in France with old and new EU standard curves. It also examines whether non-acoustical factors may explain this annoyance. For 1244 adults living near three French airports, information about demographic and socio-economic factors as well as aircraft noise annoyance, situational, personal and attitudinal factors was collected with a face-to-face questionnaire. Outdoor aircraft noise exposure was estimated by linking home address to noise exposure maps. Logistic regression models were used to investigate the association between annoyance and a broad range of other variables in addition to the Lden. Severe noise annoyance was associated not only with increased aircraft noise levels, but also with non-acoustical factors. Annoyance was higher than predicted by the old EU standard curve when estimated with the model including non-acoustical factors in addition to the Lden. It was even higher when only noise exposure was considered. However, annoyance was lower in DEBATS than predicted by the new EU standard curve provided by WHO. The increase of noise annoyance does not seem to be explained by the factors already mentioned in the literature as possible explanations. However, it cannot be ruled out that methodological differences in the HA assessment may be the reason for changes in annoyance over the years. For this reason, we argue for a definition of HA derived substantially as recommended by ICBEN. The findings of the DEBATS study also confirm that taking into account non-acoustical factors such as situational, personal and attitudinal factors would improve annoyance predictions.


Subject(s)
Airports , Noise, Transportation , Aircraft , Environmental Exposure , France , Noise, Transportation/adverse effects
2.
Environ Sci Technol ; 51(10): 5847-5855, 2017 May 16.
Article in English | MEDLINE | ID: mdl-28426205

ABSTRACT

This study aims to measure and analyze unregulated compound emissions for two Euro 6 diesel and gasoline vehicles. The vehicles were tested on a chassis dynamometer under various driving cycles: Artemis driving cycles (urban, road, and motorway), the New European Driving Cycle (NEDC) and the World Harmonized Light-Duty Test Cycle (WLTC) for Europe, and world approval cycles. The emissions of unregulated compounds (such as total particle number (PN) (over 5.6 nm); black carbon (BC); NO2; benzene, toluene, ethylbenzene, and xylene (BTEX); carbonyl compounds; and polycyclic aromatic hydrocarbons (PAHs)) were measured with several online devices, and different samples were collected using cartridges and quartz filters. Furthermore, a preliminary statistical analysis was performed on eight Euro 4-6 diesel and gasoline vehicles to study the impacts of driving conditions and after-treatment and engine technologies on emissions of regulated and unregulated pollutants. The results indicate that urban conditions with cold starts induce high emissions of BTEX and carbonyl compounds. Motorway conditions are characterized by high emissions of particle numbers and CO, which mainly induced by gasoline vehicles. Compared with gasoline vehicles, diesel vehicles equipped with catalyzed or additive DPF emit fewer particles but more NOx and carbonyl compounds.


Subject(s)
Air Pollutants/analysis , Vehicle Emissions/analysis , Europe , Gasoline , Humans , Motor Vehicles
SELECTION OF CITATIONS
SEARCH DETAIL
...