Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 84
Filter
Add more filters










Publication year range
1.
Plant Physiol ; 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38839061

ABSTRACT

Plant aquaporins are involved in numerous physiological processes, such as cellular homeostasis, tissue hydraulics, transpiration, and nutrient supply, and are key players of the response to environmental cues. While varying expression patterns of aquaporin genes have been described across organs, developmental stages and stress conditions, the underlying regulation mechanisms remain elusive. Hence, this work aimed to shed light on the expression variability of four plasma membrane intrinsic protein (PIP) genes in maize (Zea mays) leaves, and its genetic causes, through eQTL (expression quantitative trait locus) mapping across a 252-hybrid diversity panel. Significant genetic variability in PIP transcript abundance was observed to different extents depending on the isoforms. The genome-wide association study mapped numerous eQTLs, both local and distant, thus emphasizing the existing natural diversity of PIP gene expression across the studied panel and the potential to reveal regulatory actors and mechanisms. One eQTL associated with PIP2; 5 expression variation was characterized. Genomic sequence comparison and in vivo reporter assay attributed, at least partly, the local eQTL to a transposon-containing polymorphism in the PIP2; 5 promoter. This work paves the way to the molecular understanding of PIP gene regulation and its possible integration into larger networks regulating physiological and stress-adaptation processes.

2.
Plant Cell Environ ; 2024 May 14.
Article in English | MEDLINE | ID: mdl-38742465

ABSTRACT

Stomata are micropores on the leaf epidermis that allow carbon dioxide (CO2) uptake for photosynthesis at the expense of water loss through transpiration. Stomata coordinate the plant gas exchange of carbon and water with the atmosphere through their opening and closing dynamics. In the context of global climate change, it is essential to better understand the mechanism of stomatal movements under different environmental stimuli. Aquaporins (AQPs) are considered important regulators of stomatal movements by contributing to membrane diffusion of water, CO2 and hydrogen peroxide. This review compiles the most recent findings and discusses future directions to update our knowledge of the role of AQPs in stomatal movements. After highlighting the role of subsidiary cells (SCs), which contribute to the high water use efficiency of grass stomata, we explore the expression of AQP genes in guard cells and SCs. We then focus on the cellular regulation of AQP activity at the protein level in stomata. After introducing their post-translational modifications, we detail their trafficking as well as their physical interaction with various partners that regulate AQP subcellular dynamics towards and within specific regions of the cell membranes, such as microdomains and membrane contact sites.

3.
Plant Cell Environ ; 47(2): 527-539, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37946673

ABSTRACT

Plant aquaporins (AQPs) facilitate the membrane diffusion of water and small solutes, including hydrogen peroxide (H2 O2 ) and, possibly, cations, essential signalling molecules in many physiological processes. While the determination of the channel activity generally depends on heterologous expression of AQPs in Xenopus oocytes or yeast cells, we established a genetic tool to determine whether they facilitate the diffusion of H2 O2 through the plasma membrane in living plant cells. We designed genetic constructs to co-express the fluorescent H2 O2 sensor HyPer and AQPs, with expression controlled by a heat shock-inducible promoter in Nicotiana tabacum BY-2 suspension cells. After induction of ZmPIP2;5 AQP expression, a HyPer signal was recorded when the cells were incubated with H2 O2 , suggesting that ZmPIP2;5 facilitates H2 O2 transmembrane diffusion; in contrast, the ZmPIP2;5W85A mutated protein was inactive as a water or H2 O2 channel. ZmPIP2;1, ZmPIP2;4 and AtPIP2;1 also facilitated H2 O2 diffusion. Incubation with abscisic acid and the elicitor flg22 peptide induced the intracellular H2 O2 accumulation in BY-2 cells expressing ZmPIP2;5. We also monitored cation channel activity of ZmPIP2;5 using a novel fluorescent photo-switchable Li+ sensor in BY-2 cells. BY-2 suspension cells engineered for inducible expression of AQPs as well as HyPer expression and the use of Li+ sensors constitute a powerful toolkit for evaluating the transport activity and the molecular determinants of PIPs in living plant cells.


Subject(s)
Aquaporins , Hydrogen Peroxide , Hydrogen Peroxide/metabolism , Plant Cells/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Aquaporins/genetics , Aquaporins/metabolism , Cell Membrane/metabolism , Cations/metabolism , Water/metabolism
4.
Front Plant Sci ; 14: 1266775, 2023.
Article in English | MEDLINE | ID: mdl-38023881

ABSTRACT

Several recombinant proteins have been successfully produced in plants. This usually requires Agrobacterium-mediated cell transformation to deliver the T-DNA into the nucleus of plant cells. However, some genetic instability may threaten the integrity of the expression cassette during its delivery via A. tumefaciens, especially when the protein of interest is toxic to the bacteria. In particular, we found that a Tn3 transposon can be transferred from the pAL4404 Ti plasmid of A. tumefaciens LBA4404 into the expression cassette when using the widely adopted 35S promoter, thereby damaging T-DNA and preventing correct expression of the gene of interest in Nicotiana tabacum BY-2 suspension cells.

5.
Plant Biotechnol J ; 21(9): 1773-1784, 2023 09.
Article in English | MEDLINE | ID: mdl-37266972

ABSTRACT

Production of recombinant pharmaceutical glycoproteins has been carried out in multiple expression systems. However, N-glycosylation, which increases heterogeneity and raises safety concerns due to the presence of non-human residues, is usually not controlled. The presence and composition of N-glycans are also susceptible to affect protein stability, function and immunogenicity. To tackle these issues, we are developing glycoengineered Nicotiana tabacum Bright Yellow-2 (BY-2) cell lines through knock out and ectopic expression of genes involved in the N-glycosylation pathway. Here, we report on the generation of BY-2 cell lines producing deglycosylated proteins. To this end, endoglycosidase T was co-expressed with an immunoglobulin G or glycoprotein B of human cytomegalovirus in BY-2 cell lines producing only high mannose N-glycans. Endoglycosidase T cleaves high mannose N-glycans to generate single, asparagine-linked, N-acetylglucosamine residues. The N-glycosylation profile of the secreted antibody was determined by mass spectrometry analysis. More than 90% of the N-glycans at the conserved Asn297 site were deglycosylated. Likewise, extensive deglycosylation of glycoprotein B, which possesses 18 N-glycosylation sites, was observed. N-glycan composition of gB glycovariants was assessed by in vitro enzymatic mobility shift assay and proven to be consistent with the expected glycoforms. Comparison of IgG glycovariants by differential scanning fluorimetry revealed a significant impact of the N-glycosylation pattern on the thermal stability. Production of deglycosylated pharmaceutical proteins in BY-2 cells expands the set of glycoengineered BY-2 cell lines.


Subject(s)
Mannose , Nicotiana , Nicotiana/genetics , Nicotiana/metabolism , Mannose/metabolism , Recombinant Proteins/metabolism , Glycoproteins/genetics , Glycoproteins/metabolism , Glycoside Hydrolases/metabolism , Polysaccharides/metabolism , Pharmaceutical Preparations/metabolism
6.
Methods Mol Biol ; 2480: 81-88, 2022.
Article in English | MEDLINE | ID: mdl-35616858

ABSTRACT

This protocol describes a robust method to obtain transgenic Nicotiana tabacum BY-2 cells that produce glycoproteins of interest via Agrobacterium tumefaciens transformation. Compared to biolistics-based transformation, this procedure requires only standard laboratory equipment.


Subject(s)
Agrobacterium tumefaciens , Nicotiana , Agrobacterium tumefaciens/genetics , Biolistics , Plants, Genetically Modified/genetics , Plants, Genetically Modified/microbiology , Recombinant Proteins/genetics , Suspensions , Nicotiana/genetics , Nicotiana/microbiology , Transformation, Genetic
7.
iScience ; 25(5): 104238, 2022 May 20.
Article in English | MEDLINE | ID: mdl-35494253

ABSTRACT

The TORC1 (Target of Rapamycin Complex 1) kinase complex plays a pivotal role in controlling cell growth in probably all eukaryotic species. The signals and mechanisms regulating TORC1 have been intensely studied in mammals but those of fungi and plants are much less known. We have previously reported that the yeast plasma membrane H+-ATPase Pma1 promotes TORC1 activation when stimulated by cytosolic acidification or nutrient-uptake-coupled H+ influx. Furthermore, a homologous plant H+-ATPase can substitute for yeast Pma1 to promote this H+-elicited TORC1 activation. We here report that TORC1 activity in Nicotiana tabacum BY-2 cells is also strongly influenced by the activity of plasma membrane H+-ATPases. In particular, stimulation of H+-ATPases by fusicoccin activates TORC1, and this response is also observed in cells transferred to a nutrient-free and auxin-free medium. Our results suggest that plant H+-ATPases, known to be regulated by practically all factors controlling cell growth, contribute to TOR signaling.

8.
Plant Cell Environ ; 45(4): 1146-1156, 2022 04.
Article in English | MEDLINE | ID: mdl-35112729

ABSTRACT

Increasing stomatal movement is beneficial to improve plant water use efficiency and drought resilience. Contradictory results indicate that aquaporins might regulate stomatal movement. Here, we tested whether the maize plasma membrane PIP2;5 aquaporin affects stomatal closure under water deficit, abscisic acid (ABA) or vapour pressure deficit (VPD) treatment in intact plants, detached leaves or peeled epidermis. Transpiration, stomatal conductance (gs ) and aperture and reactive oxygen species (ROS) in stomatal complexes were studied in maize lines with increased or knocked down (KD) PIP2;5 gene expression. In well-watered conditions, the PIP2;5 overexpressing (OE) plants transpired more than wild types (WTs), while no significant difference in transpiration was observed between pip2;5 KD and WT. Upon mild water deficit or low ABA concentration treatments, transpiration and gs decreased more in PIP2;5 OE lines and less in pip2;5 KD lines, in comparison with WTs. In the detached epidermis, ABA treatment induced faster stomatal closing in PIP2;5 OE lines compared to WTs, while pip2;5 KD stomata were ABA insensitive. These phenotypes were associated with guard cell ROS accumulation. Additionally, PIP2;5 is involved in the transpiration decrease observed under high VPD. These data indicate that maize PIP2;5 is a key actor increasing the sensitivity of stomatal closure to water deficit.


Subject(s)
Aquaporins , Plant Stomata , Abscisic Acid/metabolism , Abscisic Acid/pharmacology , Aquaporins/genetics , Aquaporins/metabolism , Cell Membrane/metabolism , Plant Stomata/physiology , Plant Transpiration/physiology , Reactive Oxygen Species/metabolism , Water/metabolism , Zea mays/genetics , Zea mays/metabolism
9.
Physiol Plant ; 174(1): e13640, 2022 Jan.
Article in English | MEDLINE | ID: mdl-35099809

ABSTRACT

Root nitrogen acquisition has been proposed to be regulated by mass flow, a process by which water flow brings nutrients to the root surface, depending on a concerted regulation of the root hydraulic properties and stomatal conductance. As aquaporins play an important role in regulating transcellular water flow, we aimed at evaluating the short-term effect of high nitrogen (HN) availability on the dynamics of hydraulic parameters at both the root and cell level and the regulation of aquaporins. The effect of short-term HN (8 mM NO3 - ) treatment was investigated on 12 diverse 15-day-old maize genotypes. Root exposure to HN triggered a rapid (<4 h) increase in the root hydraulic conductivity (Lpr ) in seven genotypes while no Lpr variation was recorded for the others, allowing the separation of the genotypes into two groups (HN-responsive and HN-nonresponsive). A remarkable correlation between Lpr and the cortex cell hydraulic conductivity (Lpc ) was observed. However, while differences in gas exchange parameters were also observed, the variations were genotype-specific and not always correlated with the root hydraulic parameters. We then investigated whether HN-induced Lpr variations were linked to the activity and regulation of plasma membrane PIP aquaporins. While some changes in PIP mRNA levels were detected, this was not correlated with the protein levels. On the other hand, the rapid variation in Lpr observed in the B73 genotype was correlated with the PIP protein abundance in the plasma membrane, highlighting PIP posttranslational mechanisms in the short-term regulation of root hydraulic parameters in response to HN treatment.


Subject(s)
Aquaporins , Plant Roots , Aquaporins/genetics , Aquaporins/metabolism , Genotype , Nitrogen/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Plant Roots/metabolism , Water/metabolism
10.
Cells ; 10(8)2021 08 17.
Article in English | MEDLINE | ID: mdl-34440877

ABSTRACT

Saliva secretion requires effective translocation of aquaporin 5 (AQP5) water channel to the salivary glands (SGs) acinar apical membrane. Patients with Sjögren's syndrome (SS) display abnormal AQP5 localization within acinar cells from SGs that correlate with sicca manifestation and glands hypofunction. Several proteins such as Prolactin-inducible protein (PIP) may regulate AQP5 trafficking as observed in lacrimal glands from mice. However, the role of the AQP5-PIP complex remains poorly understood. In the present study, we show that PIP interacts with AQP5 in vitro and in mice as well as in human SGs and that PIP misexpression correlates with an altered AQP5 distribution at the acinar apical membrane in PIP knockout mice and SS hMSG. Furthermore, our data show that the protein-protein interaction involves the AQP5 C-terminus and the N-terminal of PIP (one molecule of PIP per AQP5 tetramer). In conclusion, our findings highlight for the first time the role of PIP as a protein controlling AQP5 localization in human salivary glands but extend beyond due to the PIP-AQP5 interaction described in lung and breast cancers.


Subject(s)
Aquaporin 5/metabolism , Membrane Transport Proteins/metabolism , Salivary Glands/metabolism , Sjogren's Syndrome/metabolism , Acinar Cells/metabolism , Animals , Aquaporin 5/chemistry , Aquaporin 5/genetics , Binding Sites , Cell Line , Humans , Membrane Transport Proteins/chemistry , Membrane Transport Proteins/genetics , Mice , Mice, Knockout , Protein Binding , Sjogren's Syndrome/genetics
11.
Plant Direct ; 5(5): e00321, 2021 May.
Article in English | MEDLINE | ID: mdl-33977216

ABSTRACT

Aquaporins (AQPs) are membrane-spanning channel proteins with exciting applications for plant engineering and industrial applications. Translational outcomes will be improved by better understanding the extensive diversity of plant AQPs. However, AQP gene families are complex, making exhaustive identification difficult, especially in polyploid species. The allotetraploid species of Nicotiana tabacum (Nt; tobacco) plays a significant role in modern biological research and is closely related to several crops of economic interest, making it a valuable platform for AQP research. Recently, De Rosa et al., (2020) and Ahmed et al., (2020), concurrently reported on the AQP gene family in tobacco, establishing family sizes of 76 and 88 members, respectively. The discrepancy highlights the difficulties of characterizing large complex gene families. Here, we identify and resolve the differences between the two studies, clarify gene models, and yield a consolidated collection of 84 members that more accurately represents the complete NtAQP family. Importantly, this consensus NtAQP collection will reduce confusion and ambiguity that would inevitably arise from having two different descriptive studies and sets of NtAQP gene names. This report also serves as a case study, highlighting and discussing variables to be considered and refinements required to ensure comprehensive gene family characterizations, which become valuable resources for examining the evolution and biological functions of genes.

12.
Front Plant Sci ; 12: 634023, 2021.
Article in English | MEDLINE | ID: mdl-33584780

ABSTRACT

Nicotiana tabacum Bright Yellow-2 (BY-2) suspension cells are among the most commonly used plant cell lines for producing biopharmaceutical glycoproteins. Recombinant glycoproteins are usually produced with a mix of high-mannose and complex N-glycans. However, N-glycan heterogeneity is a concern for the production of therapeutic or vaccine glycoproteins because it can alter protein activity and might lead to batch-to-batch variability. In this report, a BY-2 cell line producing glycoproteins devoid of complex N-glycans was obtained using CRISPR/Cas9 edition of two N-acetylglucosaminyltransferase I (GnTI) genes, whose activity is a prerequisite for the formation of all complex N-glycans. The suppression of complex N-glycans in the GnTI-knocked out (KO) cell lines was assessed by Western blotting. Lack of ß1,2-xylose residues confirmed the abolition of GnTI activity. Unexpectedly, α1,3-fucose residues were still detected albeit dramatically reduced as compared with wild-type cells. To suppress the remaining α1,3-fucose residues, a second genome editing targeted both GnTI and α1,3-fucosyltransferase (FucT) genes. No ß1,2-xylose nor α1,3-fucose residues were detected on the glycoproteins produced by the GnTI/FucT-KO cell lines. Absence of complex N-glycans on secreted glycoproteins of GnTI-KO and GnTI/FucT-KO cell lines was confirmed by mass spectrometry. Both cell lines produced high-mannose N-glycans, mainly Man5 (80 and 86%, respectively) and Man4 (16 and 11%, respectively). The high degree of N-glycan homogeneity and the high-mannose N-glycosylation profile of these BY-2 cell lines is an asset for their use as expression platforms.

13.
Int J Mol Sci ; 21(13)2020 Jul 03.
Article in English | MEDLINE | ID: mdl-32635213

ABSTRACT

Aquaporins (AQPs) are a class of integral membrane proteins that facilitate the membrane diffusion of water and other small solutes. Nicotiana tabacum is an important model plant, and its allotetraploid genome has recently been released, providing us with the opportunity to analyze the AQP gene family and its evolution. A total of 88 full-length AQP genes were identified in the N. tabacum genome, and the encoding proteins were assigned into five subfamilies: 34 plasma membrane intrinsic proteins (PIPs); 27 tonoplast intrinsic proteins (TIPs); 20 nodulin26-like intrinsic proteins (NIPs); 3 small basic intrinsic proteins (SIPs); 4 uncharacterized X intrinsic proteins (XIPs), including two splice variants. We also analyzed the genomes of two N. tabacum ancestors, Nicotiana tomentosiformis and Nicotiana sylvestris, and identified 49 AQP genes in each species. Functional prediction, based on the substrate specificity-determining positions (SDPs), revealed significant differences in substrate specificity among the AQP subfamilies. Analysis of the organ-specific AQP expression levels in the N. tabacum plant and RNA-seq data of N. tabacum bright yellow-2 suspension cells indicated that many AQPs are simultaneously expressed, but differentially, according to the organs or the cells. Altogether, these data constitute an important resource for future investigations of the molecular, evolutionary, and physiological functions of AQPs in N. tabacum.


Subject(s)
Aquaporins/genetics , Genes, Plant , Nicotiana/genetics , Plant Proteins/genetics , Amino Acid Sequence , Aquaporins/chemistry , Aquaporins/physiology , Binding Sites/genetics , Evolution, Molecular , Gene Expression Regulation, Plant , Genome, Plant , Multigene Family , Phylogeny , Plant Proteins/chemistry , Plant Proteins/physiology , Tetraploidy , Tissue Distribution , Nicotiana/physiology
14.
Front Plant Sci ; 11: 458, 2020.
Article in English | MEDLINE | ID: mdl-32373147

ABSTRACT

The opening and closure of stomata depend on the turgor pressure adjustment by the influx or efflux of ions and water in guard cells. In this process, aquaporins may play important roles by facilitating the transport of water and other small molecules. In this perspective, we consider the potential roles of aquaporins in the membrane diffusion of different molecules (H2O, CO2, and H2O2), processes dependent on abscisic acid and CO2 signaling in guard cells. While the limited data already available emphasizes the roles of aquaporins in stomatal movement, we propose additional approaches to elucidate the specific roles of single or several aquaporin isoforms in the stomata and evaluate the perspectives aquaporins might offer to improve stomatal dynamics.

15.
Plant Physiol ; 182(4): 2154-2165, 2020 04.
Article in English | MEDLINE | ID: mdl-31980571

ABSTRACT

The plasma membrane intrinsic protein PIP2;5 is the most highly expressed aquaporin in maize (Zea mays) roots. Here, we investigated how deregulation of PIP2;5 expression affects water relations and growth using maize overexpression (OE; B104 inbred) or knockout (KO; W22 inbred) lines. The hydraulic conductivity of the cortex cells of roots grown hydroponically was higher in PIP2;5 OE and lower in pip2;5 KO lines compared with the corresponding wild-type plants. While whole-root conductivity decreased in the KO lines compared to the wild type, no difference was observed in OE plants. This paradox was interpreted using the MECHA hydraulic model, which computes the radial flow of water within root sections. The model hints that the plasma membrane permeability of the cells is not radially uniform but that PIP2;5 may be saturated in cell layers with apoplastic barriers, i.e. the endodermis and exodermis, suggesting the presence of posttranslational mechanisms controlling the abundance of PIP in the plasma membrane in these cells. At the leaf level, where the PIP2;5 gene is weakly expressed in wild-type plants, the hydraulic conductance was higher in the PIP2;5 OE lines compared with the wild-type plants, whereas no difference was observed in the pip2;5 KO lines. The temporal trend of leaf elongation rate, used as a proxy for that of xylem water potential, was faster in PIP2;5 OE plants upon mild stress, but not in well-watered conditions, demonstrating that PIP2;5 may play a beneficial role in plant growth under specific conditions.


Subject(s)
Aquaporins/metabolism , Plant Roots/metabolism , Water/metabolism , Aquaporins/genetics , Gene Expression Regulation, Plant/genetics , Gene Expression Regulation, Plant/physiology , Plant Leaves/genetics , Plant Leaves/metabolism , Plant Roots/genetics , Plant Transpiration/genetics , Plant Transpiration/physiology , Xylem/genetics , Xylem/metabolism , Zea mays/genetics , Zea mays/metabolism
16.
New Phytol ; 228(3): 973-988, 2020 11.
Article in English | MEDLINE | ID: mdl-33410187

ABSTRACT

Plasma membrane (PM) intrinsic proteins (PIPs) are aquaporins facilitating the diffusion of water and small solutes. The functional importance of the PM organisation of PIPs in the interaction with other cellular structures is not completely understood. We performed a pull-down assay using maize (Zea mays) suspension cells expressing YFP-ZmPIP2;5 and validated the protein interactions by yeast split-ubiquitin and bimolecular fluorescence complementation assays. We expressed interacting proteins tagged with fluorescent proteins in Nicotiana benthamiana leaves and performed water transport assays in oocytes. Finally, a phylogenetic analysis was conducted. The PM-located ZmPIP2;5 physically interacts with the endoplasmic reticulum (ER) resident ZmVAP27-1. This interaction requires the ZmVAP27-1 cytoplasmic major sperm domain. ZmPIP2;5 and ZmVAP27-1 localise in close vicinity in ER-PM contact sites (EPCSs) and endocytic structures upon exposure to salt stress conditions. This interaction enhances PM water permeability in oocytes. Similarly, the Arabidopsis ZmVAP27-1 paralogue, AtVAP27-1, interacts with the AtPIP2;7 aquaporin. Together, these data indicate that the PIP2-VAP27 interaction in EPCSs is evolutionarily conserved, and suggest that VAP27 might stabilise the aquaporins and guide their endocytosis in response to salt stress.


Subject(s)
Aquaporins , Endoplasmic Reticulum , Aquaporins/genetics , Cell Membrane , Oocytes , Phylogeny
17.
Front Plant Sci ; 11: 631643, 2020.
Article in English | MEDLINE | ID: mdl-33537055

ABSTRACT

Plasma membrane intrinsic proteins (PIPs) are channels facilitating the passive diffusion of water and small solutes. Arabidopsis PIP2;7 trafficking occurs through physical interaction with SNARE proteins including the syntaxin SYP121, a plasma membrane Qa-SNARE involved in membrane fusion. To better understand the interaction mechanism, we aimed at identifying the interaction motifs in SYP121 and PIP2;7 using ratiometric bimolecular fluorescence complementation assays in Nicotiana benthamiana. SYP121 consists of four regions, N, H, Q, and C, and sequential deletions revealed that the C region, containing the transmembrane domain, as well as the H and Q regions, containing the Habc and Qa-SNARE functional domains, interact with PIP2;7. Neither the linker between the Habc and the Qa-SNARE domains nor the H or Q regions alone could fully restore the interaction with PIP2;7, suggesting that the interacting motif depends on the conformation taken by the HQ region. When investigating the interacting motif(s) in PIP2;7, we observed that deletion of the cytosolic N- and/or C- terminus led to a significant decrease in the interaction with SYP121. Shorter deletions revealed that at the N-terminal amino acid residues 18-26 were involved in the interaction. Domain swapping experiments between PIP2;7 and PIP2;6, a PIP isoform that does not interact with SYP121, showed that PIP2;7 N-terminal part up to the loop C was required to restore the full interaction signal, suggesting that, as it is the case for SYP121, the interaction motif(s) in PIP2;7 depend on the protein conformation. Finally, we also showed that PIP2;7 physically interacted with other Arabidopsis SYP1s and SYP121 orthologs.

18.
New Phytol ; 225(3): 1383-1396, 2020 02.
Article in English | MEDLINE | ID: mdl-31550387

ABSTRACT

Nodulin 26-like intrinsic proteins (NIPs) play essential roles in transporting the nutrients silicon and boron in seed plants, but the evolutionary origin of this transport function and the co-permeability to toxic arsenic remains enigmatic. Horizontal gene transfer of a yet uncharacterised bacterial AqpN-aquaporin group was the starting-point for plant NIP evolution. We combined intense sequence, phylogenetic and genetic context analyses and a mutational approach with various transport assays in oocytes and plants to resolve the transorganismal and functional evolution of bacterial and algal and terrestrial plant NIPs and to reveal their molecular transport specificity features. We discovered that aqpN genes are prevalently located in arsenic resistance operons of various prokaryotic phyla. We provided genetic and functional evidence that these proteins contribute to the arsenic detoxification machinery. We identified NIPs with the ancestral bacterial AqpN selectivity filter composition in algae, liverworts, moss, hornworts and ferns and demonstrated that these archetype plant NIPs and their prokaryotic progenitors are almost impermeable to water and silicon but transport arsenic and boron. With a mutational approach, we demonstrated that during evolution, ancestral NIP selectivity shifted to allow subfunctionalisations. Together, our data provided evidence that evolution converted bacterial arsenic efflux channels into essential seed plant nutrient transporters.


Subject(s)
Arsenic/metabolism , Evolution, Molecular , Membrane Proteins/genetics , Nitrogen/metabolism , Phosphorus/metabolism , Plant Proteins/genetics , Plants/metabolism , Animals , Aquaporins/metabolism , Bacteria/metabolism , Biodegradation, Environmental , Biological Transport , Boric Acids/metabolism , Boron/metabolism , Bryophyta/metabolism , Cell Membrane/metabolism , Diffusion , Metalloids/metabolism , Mutation/genetics , Oocytes/metabolism , Phenotype , Phylogeny , Recombinant Fusion Proteins/metabolism , Silicic Acid/metabolism , Water/metabolism , Xenopus/metabolism
19.
Plant Physiol Biochem ; 145: 95-106, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31675527

ABSTRACT

In order to improve the understanding of plant water relations under drought stress, the water use behavior of two Fragaria x ananassa Duch. cultivars, contrasting in their drought stress phenotype, is identified. Under drought, stomatal closure is gradual in Figaro. Based on this, we associate Figaro with conservative water use behavior. Contrarily, drought stress causes a sudden and steep decrease in stomatal conductance in Flair, leading to the identification of Flair as a prodigal water use behavior cultivar. Responses to progressive drought on the one hand and an osmotic shock on the other hand are compared between these two cultivars. Tonoplast intrinsic protein mRNA levels are shown to be upregulated under progressive drought in the roots of Figaro only. Otherwise, aquaporin expression upon drought or osmotic stress is similar between both cultivars, i.e. plasma membrane intrinsic proteins are downregulated under progressive drought in leaves and under short term osmotic shock in roots. In response to osmotic shock, root hydraulic conductivity did not change significantly and stomatal closure is equal in both cultivars. De novo abscisic acid biosynthesis is upregulated in the roots of both cultivars under progressive drought.


Subject(s)
Aquaporins , Droughts , Fragaria , Gene Expression Regulation, Plant , Osmotic Pressure , Stress, Physiological , Aquaporins/genetics , Fragaria/genetics , Fragaria/metabolism , Gene Expression Regulation, Plant/drug effects , Plant Leaves/metabolism , Plant Proteins/genetics , Plant Roots , Stress, Physiological/genetics , Water
20.
Int J Mol Sci ; 20(15)2019 Jul 31.
Article in English | MEDLINE | ID: mdl-31370181

ABSTRACT

The ability to control the glycosylation pattern of recombinant viral glycoproteins represents a major prerequisite before their use as vaccines. The aim of this study consisted of expressing the large soluble ectodomain of glycoprotein B (gB) from Human Cytomegalovirus (HMCV) in Nicotiana tabacum Bright Yellow-2 (BY-2) suspension cells and of comparing its glycosylation profile with that of gB produced in Chinese hamster ovary (CHO) cells. gB was secreted in the BY-2 culture medium at a concentration of 20 mg/L and directly purified by ammonium sulfate precipitation and size exclusion chromatography. We then measured the relative abundance of N-glycans present on 15 (BY-2) and 17 (CHO) out of the 18 N-sites by multienzymatic proteolysis and mass spectrometry. The glycosylation profile differed at each N-site, some sites being occupied exclusively by oligomannosidic type N-glycans and others by complex N-glycans processed in some cases with additional Lewis A structures (BY-2) or with beta-1,4-galactose and sialic acid (CHO). The profiles were strikingly comparable between BY-2- and CHO-produced gB. These results suggest a similar gB conformation when glycoproteins are expressed in plant cells as site accessibility influences the glycosylation profile at each site. These data thus strengthen the BY-2 suspension cultures as an alternative expression system.


Subject(s)
Peptide Fragments/chemistry , Polysaccharides/chemistry , Viral Envelope Proteins/chemistry , Ammonium Sulfate/chemistry , Animals , CHO Cells , Carbohydrate Sequence , Chemical Precipitation , Chromatography, Gel/methods , Cricetulus , Galactose/chemistry , Gene Expression , Glycosylation , Humans , N-Acetylneuraminic Acid/chemistry , Peptide Fragments/isolation & purification , Plant Cells/metabolism , Polysaccharides/isolation & purification , Proteolysis , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Nicotiana/cytology , Nicotiana/metabolism , Viral Envelope Proteins/genetics , Viral Envelope Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...