Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS Comput Biol ; 12(4): e1004839, 2016 Apr.
Article in English | MEDLINE | ID: mdl-27115287

ABSTRACT

Mathematics is often used to model biological systems. In mammary gland development, mathematical modeling has been limited to acinar and branching morphogenesis and breast cancer, without reference to normal duct formation. We present a model of ductal elongation that exploits the geometrically-constrained shape of the terminal end bud (TEB), the growing tip of the duct, and incorporates morphometrics, region-specific proliferation and apoptosis rates. Iterative model refinement and behavior analysis, compared with biological data, indicated that the traditional metric of nipple to the ductal front distance, or percent fat pad filled to evaluate ductal elongation rate can be misleading, as it disregards branching events that can reduce its magnitude. Further, model driven investigations of the fates of specific TEB cell types confirmed migration of cap cells into the body cell layer, but showed their subsequent preferential elimination by apoptosis, thus minimizing their contribution to the luminal lineage and the mature duct.


Subject(s)
Mammary Glands, Animal/cytology , Mammary Glands, Animal/growth & development , Models, Biological , Animals , Apoptosis , Body Patterning , Cell Cycle , Cell Proliferation , Cell Size , Computational Biology , Female , Kinetics , Mice , Mice, Inbred BALB C , Mice, Transgenic , Models, Anatomic , Sexual Maturation
2.
Phys Biol ; 9(5): 055005, 2012 Oct.
Article in English | MEDLINE | ID: mdl-23011729

ABSTRACT

The kinesins have long been known to drive microtubule-based transport of sub-cellular components, yet the mechanisms of their attachment to cargo remain a mystery. Several different cargo-receptors have been proposed based on their in vitro binding affinities to kinesin-1. Only two of these-phosphatidyl inositol, a negatively charged lipid, and the carboxyl terminus of the amyloid precursor protein (APP-C), a trans-membrane protein-have been reported to mediate motility in living systems. A major question is how these many different cargo, receptors and motors interact to produce the complex choreography of vesicular transport within living cells. Here we describe an experimental assay that identifies cargo-motor receptors by their ability to recruit active motors and drive transport of exogenous cargo towards the synapse in living axons. Cargo is engineered by derivatizing the surface of polystyrene fluorescent nanospheres (100 nm diameter) with charged residues or with synthetic peptides derived from candidate motor receptor proteins, all designed to display a terminal COOH group. After injection into the squid giant axon, particle movements are imaged by laser-scanning confocal time-lapse microscopy. In this report we compare the motility of negatively charged beads with APP-C beads in the presence of glycine-conjugated non-motile beads using new strategies to measure bead movements. The ensuing quantitative analysis of time-lapse digital sequences reveals detailed information about bead movements: instantaneous and maximum velocities, run lengths, pause frequencies and pause durations. These measurements provide parameters for a mathematical model that predicts the spatiotemporal evolution of distribution of the two different types of bead cargo in the axon. The results reveal that negatively charged beads differ from APP-C beads in velocity and dispersion, and predict that at long time points APP-C will achieve greater progress towards the presynaptic terminal. The significance of this data and accompanying model pertains to the role transport plays in neuronal function, connectivity, and survival, and has implications in the pathogenesis of neurological disorders, such as Alzheimer's, Huntington and Parkinson's diseases.


Subject(s)
Axons/metabolism , Biological Transport , Models, Biological , Amyloid beta-Protein Precursor/metabolism , Animals , Biophysics/methods , Decapodiformes/cytology , Decapodiformes/metabolism , Glycine/chemistry , Glycine/metabolism , Kinesins/metabolism , Mathematical Computing , Microscopy, Confocal/methods , Nanospheres , Peptides/chemistry , Peptides/metabolism , Reproducibility of Results
3.
J Biol Dyn ; 6 Suppl 1: 54-71, 2012.
Article in English | MEDLINE | ID: mdl-22873675

ABSTRACT

Gliomas are very aggressive brain tumours, in which tumour cells gain the ability to penetrate the surrounding normal tissue. The invasion mechanisms of this type of tumour remain to be elucidated. Our work is motivated by the migration/proliferation dichotomy (go-or-grow) hypothesis, i.e. the antagonistic migratory and proliferating cellular behaviours in a cell population, which may play a central role in these tumours. In this paper, we formulate a simple go-or-grow model to investigate the dynamics of a population of glioma cells for which the switch from a migratory to a proliferating phenotype (and vice versa) depends on the local cell density. The model consists of two reaction-diffusion equations describing cell migration, proliferation and a phenotypic switch. We use a combination of numerical and analytical techniques to characterize the development of spatio-temporal instabilities and travelling wave solutions generated by our model. We demonstrate that the density-dependent go-or-grow mechanism can produce complex dynamics similar to those associated with tumour heterogeneity and invasion.


Subject(s)
Brain Neoplasms/pathology , Cell Cycle , Cell Movement , Glioma/pathology , Models, Biological , Cell Count , Cell Proliferation , Diffusion , Humans , Neoplasm Invasiveness , Time Factors
4.
AIP Adv ; 2(1): 11210, 2012 Mar.
Article in English | MEDLINE | ID: mdl-22489279

ABSTRACT

Cancer is a disease that can be seen as a complex system whose dynamics and growth result from nonlinear processes coupled across wide ranges of spatio-temporal scales. The current mathematical modeling literature addresses issues at various scales but the development of theoretical methodologies capable of bridging gaps across scales needs further study. We present a new theoretical framework based on Dynamic Density Functional Theory (DDFT) extended, for the first time, to the dynamics of living tissues by accounting for cell density correlations, different cell types, phenotypes and cell birth/death processes, in order to provide a biophysically consistent description of processes across the scales. We present an application of this approach to tumor growth.

5.
Article in English | MEDLINE | ID: mdl-21853537

ABSTRACT

Cancer is arguably the ultimate complex biological system. Solid tumors are microstructured soft matter that evolves as a consequence of spatio-temporal events at the intracellular (e.g., signaling pathways, macromolecular trafficking), intercellular (e.g., cell-cell adhesion/communication), and tissue (e.g., cell-extracellular matrix interactions, mechanical forces) scales. To gain insight, tumor and developmental biologists have gathered a wealth of molecular, cellular, and genetic data, including immunohistochemical measurements of cell type-specific division and death rates, lineage tracing, and gain-of-function/loss-of-function mutational analyses. These data are empirically extrapolated to a diagnosis/prognosis of tissue-scale behavior, e.g., for clinical decision. Integrative physical oncology (IPO) is the science that develops physically consistent mathematical approaches to address the significant challenge of bridging the nano (nm)-micro (µm) to macro (mm, cm) scales with respect to tumor development and progression. In the current literature, such approaches are referred to as multiscale modeling. In the present article, we attempt to assess recent modeling approaches on each separate scale and critically evaluate the current 'hybrid-multiscale' models used to investigate tumor growth in the context of brain and breast cancers. Finally, we provide our perspective on the further development and the impact of IPO.


Subject(s)
Brain Neoplasms/metabolism , Brain Neoplasms/pathology , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Medical Oncology/trends , Calcinosis/metabolism , Calcinosis/pathology , Cell Hypoxia , Cell Polarity , Computer Simulation , Female , Humans , Male , Models, Biological , Mutation , Neoplasm Invasiveness , Neoplastic Stem Cells/physiology
6.
J Theor Biol ; 287: 131-47, 2011 Oct 21.
Article in English | MEDLINE | ID: mdl-21816160

ABSTRACT

Invasion of malignant glioma is a highly complex phenomenon involving molecular and cellular processes at various spatio-temporal scales, whose precise interplay is still not fully understood. In order to identify the intrinsic cellular mechanisms of glioma invasion, we study an in vitro culture of glioma cells. By means of a computational approach, based on a cellular automaton model, we compare simulation results to the experimental data and deduce cellular mechanisms from microscopic and macroscopic observables (experimental data). For the first time, it is shown that the migration/proliferation dichotomy plays a central role in the invasion of glioma cells. Interestingly, we conclude that a diverging invasive zone is a consequence of this dichotomy. Additionally, we observe that radial persistence of glioma cells in the vicinity of dense areas accelerates the invasion process. We argue that this persistence results from a cell-cell repulsion mechanism. If glioma cell behavior is regulated through a migration/proliferation dichotomy and a self-repellent mechanism, our simulations faithfully reproduce all the experimental observations.


Subject(s)
Brain Neoplasms/pathology , Glioma/pathology , Models, Biological , Algorithms , Cell Movement/physiology , Cell Proliferation , Humans , Neoplasm Invasiveness/physiopathology , Spheroids, Cellular , Tumor Cells, Cultured
7.
Curr Breast Cancer Rep ; 2(3): 121-129, 2010 Sep.
Article in English | MEDLINE | ID: mdl-21151486

ABSTRACT

Mathematical modeling has recently been added as a tool in the fight against cancer. The field of mathematical oncology has received great attention and increased enormously, but over-optimistic estimations about its ability have created unrealistic expectations. We present a critical appraisal of the current state of mathematical models of cancer. Although the field is still expanding and useful clinical applications may occur in the future, managing over-expectation requires the proposal of alternative directions for mathematical modeling. Here, we propose two main avenues for this modeling: 1) the identification of the elementary biophysical laws of cancer development, and 2) the development of a multiscale mathematical theory as the framework for models predictive of tumor growth. Finally, we suggest how these new directions could contribute to addressing the current challenges of understanding breast cancer growth and metastasis.

SELECTION OF CITATIONS
SEARCH DETAIL
...