Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Langmuir ; 39(43): 15231-15237, 2023 Oct 31.
Article in English | MEDLINE | ID: mdl-37844290

ABSTRACT

In this work, an innovative and versatile strategy for the fabrication of nanostructured organic thin films is established based on the wrinkling phenomenon taking place in a bilayer system constituted by a liquid plasma polymer film (PPF) and a top Al coating. By means of morphological characterization (i.e., atomic force microscopy and scanning electron microscopy), it has been demonstrated that the wrinkle dimensions (i.e., wavelength and amplitude) evolve as a function of the PPF thickness according to models established for conventional polymers. The wrinkled surfaces exhibit great stability over time as their dimension did not vary after 100 days of aging, resulting from a pinning phenomenon between the Al layer and the Si substrate, hence freezing the morphology. In a second step, the wrinkled surfaces have been employed as templates for the deposition of an additional PPF third layer, giving rise to the formation of a nanostructured organic-based surface. The chemical composition of the material can be tuned through an appropriate choice of precursor (i.e., allyl alcohol or propanethiol).

2.
Beilstein J Nanotechnol ; 14: 83-94, 2023.
Article in English | MEDLINE | ID: mdl-36761681

ABSTRACT

Nanostructured noble metal thin films are highly studied for their interesting plasmonic properties. The latter can be effectively used for the detection of small and highly diluted molecules by the surface-enhanced Raman scattering (SERS) effect. Regardless of impressive detection limits achieved, synthesis complexity and the high cost of gold restrict its use in devices. Here, we report on a novel two-step approach that combines the deposition of a silver-aluminum thin film with dealloying to design and fabricate efficient SERS platforms. The magnetron sputtering technique was used for the deposition of the alloy thin film to be dealloyed. After dealloying, the resulting silver nanoporous structures revealed two degrees of porosity: macroporosity, associated to the initial alloy morphology, and nanoporosity, related to the dealloying step. The resulting nanoporous columnar structure was finely optimized by tuning deposition (i.e., the alloy chemical composition) and dealloying (i.e., dealloying media) parameters to reach the best SERS properties. These are reported for samples dealloyed in HCl and with 30 atom % of silver at the initial state with a detection limit down to 10-10 mol·L-1 for a solution of rhodamine B.

3.
Phys Chem Chem Phys ; 25(4): 2803-2809, 2023 Jan 27.
Article in English | MEDLINE | ID: mdl-36412107

ABSTRACT

This paper reports on the effect of the solvent viscosity on the formation of gold nanoparticles (Au NPs) during the sputtering onto liquid (SoL) process. All other parameters related to the plasma and the host liquid are kept constant. SoL is a simple highly reproducible approach for the preparation of colloidal dispersions of small naked NPs. The properties of the final product are determined by both the sputtering parameters and the host liquid characteristics. As a model system we chose to sputter a gold target by a direct-current magnetron discharge onto a line of polymerized rapeseed oils having similar surface tension (32.6-33.1 mJ m-2 at RT). It was found that well-dispersed Au NPs grow in the bulk solution of oils with low viscosities (below 630 cP at 25 °C), while a gold film forms onto the surface of high viscosity liquids (more than 1000 cP at 25 °C). The mean diameter of the individual Au NPs is in the range of about 2.1-2.5 nm according to transmission electron microscopy.

4.
Beilstein J Nanotechnol ; 13: 10-53, 2022.
Article in English | MEDLINE | ID: mdl-35059275

ABSTRACT

Sputter deposition of atoms onto liquid substrates aims at producing colloidal dispersions of small monodisperse ultrapure nanoparticles (NPs). Since sputtering onto liquids combines the advantages of the physical vapor deposition technique and classical colloidal synthesis, the review contains chapters explaining the basics of (magnetron) sputter deposition and the formation of NPs in solution. This review article covers more than 132 papers published on this topic from 1996 to September 2021 and aims at providing a critical analysis of most of the reported data; we will address the influence of the sputtering parameters (sputter power, current, voltage, sputter time, working gas pressure, and the type of sputtering plasma) and host liquid properties (composition, temperature, viscosity, and surface tension) on the NP formation as well as a detailed overview of the properties and applications of the produced NPs.

5.
Nanoscale Adv ; 3(16): 4780-4789, 2021 Aug 10.
Article in English | MEDLINE | ID: mdl-36134317

ABSTRACT

We report on the growth of metal- and metal-oxide based nanoparticles (NPs) in heated polyol solutions. For this purpose, NPs are produced by the sputtering of a silver, gold, or a copper target to produce either silver, gold, or copper oxide NPs in pentaerythritol ethoxylate (PEEL) which has been annealed up to 200 °C. The objective of the annealing step is the fine modulation of their size. Thus, the evolution of the NP size and shape after thermal annealing is explained according to collision/coalescence kinetics and the affinity between the metal-/metal-oxide and PEEL molecule. Moreover, highlights of few phenomena arising from the annealing step are described such as (i) the reduction of copper oxide into copper by the polyol process and (ii) the effective formation of carbon dots after annealing at 200 °C.

6.
Nanotechnology ; 31(45): 455303, 2020 Nov 06.
Article in English | MEDLINE | ID: mdl-32726767

ABSTRACT

Effective methods for the synthesis of high-purity nanoparticles (NPs) have been extensively studied for a few decades. Among others, cold plasma-based sputtering metals onto a liquid substrate appears to be a very promising technique for the synthesis of high-purity NPs. The process enables the production of very small NPs without using any toxic reagents and complex chemical synthesis routes, and enables the synthesis of alloy NPs which can be the first step towards the formation of porous NPs. In this paper, the synthesis of gold-copper alloy NPs has been performed by co-sputtering gold and copper targets over pentaerythritol ethoxylate. The resulting solutions contain a mixture of gold, copper oxide, and alloy NPs having a radius of few angstroms. The annealing of these NPs, inside the solution, has been performed in order to increase their size and further induce the dealloying of the Au-Cu NPs. The resulting NPs exhibit either a nanoporous structure or are self-organized in an agglomerate of small NPs.

7.
Nanoscale ; 12(23): 12602-12612, 2020 Jun 21.
Article in English | MEDLINE | ID: mdl-32501469

ABSTRACT

Lamellar nanoporous gold thin films, constituted of a stack of very thin layers of porous gold, are synthesized by chemical etching from a stack of successively deposited nanolayers of copper and gold. The gold ligament size, the pore size and the distance between lamellas are tunable in the few tens nanometer range by controlling the initial thickness of the layers and the etching time. The SERS activity of these lamellar porous gold films is characterized by their SERS responses after adsorption of probe bipyridine and naphtalenethiol molecules. The SERS signal is investigated as a function of the bipyridine concentration from 10-14 mol L-1 to 10-3 mol L-1. The higher SERS response corresponds to an experimental detection limit down to 10-12 mol L-1. These performance is mainly attributed to the specific nanoporous gold architecture and the larger accessible surface to volume ratio. The lamellar nanoporous gold substrate is explored for sensitive SERS detection of dimethyl methylphosphonate (DMMP), a surrogate molecule of the highly toxic G-series nerve agents. The resultant nanostructure facilitates the diffusion of target molecules through the nanopores and their localization at the enhancing metallic surface leading to the unequivocal Raman signature of DMMP at a concentration of 5 parts per million.

8.
Beilstein J Nanotechnol ; 7: 1361-1367, 2016.
Article in English | MEDLINE | ID: mdl-27826510

ABSTRACT

We report on a novel fabrication approach of metal nanowires with complex surface. Taking advantage of nodular growth triggered by the presence of surface defects created intentionally on the substrate as well as the high tilt angle between the magnetron source axis and the normal to the substrate, metal nanowires containing hillocks emerging out of the surface can be created. The approach is demonstrated for several metals and alloys including gold, copper, silver, gold-copper and gold-silver. We demonstrate that applying an electrochemical dealloying process to the gold-copper alloy nanowire arrays allows for transforming the hillocks into ring-like shaped nanopores. The resulting porous gold nanowires exhibit a very high roughness and high specific surface making of them a promising candidate for the development of SERS-based sensors.

9.
ACS Appl Mater Interfaces ; 8(10): 6611-20, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26926232

ABSTRACT

Nanoporous materials are of great interest for various technological applications including sensors based on surface-enhanced Raman scattering, catalysis, and biotechnology. Currently, tremendous efforts are dedicated to the development of porous one-dimensional materials to improve the properties of such class of materials. The main drawback of the synthesis approaches reported so far includes (i) the short length of the porous nanowires, which cannot reach the macroscopic scale, and (ii) the poor organization of the nanostructures obtained by the end of the synthesis process. In this work, we report for the first time on a two-step approach allowing creating highly ordered porous gold nanowire arrays with a length up to a few centimeters. This two-step approach consists of the growth of gold/copper alloy nanowires by magnetron cosputtering on a nanograted silicon substrate, serving as a physical template, followed by a selective dissolution of copper by an electrochemical anodic process in diluted sulfuric acid. We demonstrate that the pore size of the nanowires can be tailored between 6 and 21 nm by tuning the dealloying voltage between 0.2 and 0.4 V and the dealloying time within the range of 150-600 s. We further show that the initial gold content (11 to 26 atom %) and the diameter of the gold/copper alloy nanowires (135 to 250 nm) are two important parameters that must carefully be selected to precisely control the porosity of the material.


Subject(s)
Electrochemical Techniques , Gold/chemistry , Nanowires/chemistry , Nanowires/ultrastructure , Porosity
10.
Nanoscale ; 8(1): 141-8, 2016 Jan 07.
Article in English | MEDLINE | ID: mdl-26611109

ABSTRACT

Nanoporous materials are of great importance for a broad range of applications including catalysis, optical sensors and water filtration. Although several approaches already exist for the creation of nanoporous materials, the race for the development of versatile methods, more suitable for the nanoelectronics industry, is still ongoing. In this communication we report for the first time on the possibility of generating nanoporosity in silver nanocolumns using a dry approach based on the oxidation of silver by direct exposure to a commercially available radio-frequency air plasma. The silver nanocolumns are created by glancing angle deposition using magnetron sputtering of a silver target in pure argon plasma. We show that upon exposure to the rf air plasma, the nanocolumns transform from solid silver into nanoporous silver oxide. We further show that by tuning the plasma pressure and the exposure duration, the oxidation process can be finely adjusted allowing for precisely controlling the morphology and the nanoporosity of the silver oxide nanocolumns. The generation of porosity within the silver nanocolumns is explained according to a cracking-induced oxidation mechanism based on two repeated events occurring alternately during the oxidation process: (i) oxidation of silver upon exposure to the air plasma and (ii) generation of nanocracks and blisters within the oxide layer due to the high internal stress generated within the material during oxidation.

11.
ACS Appl Mater Interfaces ; 7(4): 2310-21, 2015 Feb 04.
Article in English | MEDLINE | ID: mdl-25562716

ABSTRACT

Understanding the dealloying mechanisms of gold-based alloy thin films resulting in the formation of nanoporous gold with a sponge-like structure is essential for the future design and integration of this novel class of material in practical devices. Here we report on the synthesis of nanoporous gold thin films using a free-corrosion approach in nitric acid applied to cosputtered Au-Cu thin films. A relationship is established between the as-grown Au-Cu film characteristics (i.e., composition, morphology, and structure) and the porosity of the sponge-like gold thin films. We further demonstrate that the dealloying approach can be applied to nonhomogenous Au-Cu alloy thin films consisting of periodic and alternate Au-rich/Au-poor nanolayers. In such a case, however, the dealloying process is found to be altered and unusual etching stages arise. Thanks to defects and column boundaries playing the role of channels, the nitric acid is found to quickly penetrate within the films and then laterally (i.e., parallel to the film surface) attacks the nanolayers rather than perpendicularly. As a consequence to this anisotropic etching, the Au-poor layers are etched preferentially and transform into Au pillars holding the Au-rich layers and preventing them against collapsing. A further exposure to nitric acid results in the collapsing of the Au-rich layers accompanied by a transition from a multilayered to a sponge-like structure. A scenario, supported by experimental observations, is further proposed to provide a detailed explanation of the fundamental mechanisms occurring during the dealloying process of films with a multilayered structure.

SELECTION OF CITATIONS
SEARCH DETAIL
...