Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
Nano Lett ; 23(8): 3245-3250, 2023 Apr 26.
Article in English | MEDLINE | ID: mdl-37057961

ABSTRACT

The generation of photon pairs from nanoscale structures with high rates is still a challenge for the integration of quantum devices, as it suffers from parasitic signals from the substrate. In this work, we report type-0 spontaneous parametric down-conversion at 1550 nm from individual bottom-up grown zinc-blende GaAs nanowires with lengths of up to 5 µm and diameters of up to 450 nm. The nanowires were deposited on a transparent ITO substrate, and we measured a background-free coincidence rate of 0.05 Hz in a Hanbury-Brown-Twiss setup. Taking into account transmission losses, the pump fluence, and the nanowire volume, we achieved a biphoton generation of 60 GHz/Wm, which is at least 3 times higher than that of previously reported single nonlinear micro- and nanostructures. We also studied the correlations between the second-harmonic generation and the spontaneous parametric down-conversion intensities with respect to the pump polarization and in different individual nanowires.

2.
Nanotechnology ; 34(4)2022 Nov 11.
Article in English | MEDLINE | ID: mdl-36270200

ABSTRACT

Ultralong GaAs nanowires were grown by molecular beam epitaxy using the vapor-liquid-solid method. In this ultralong regime we show the existence of two features concerning the growth kinetic and the structural properties. Firstly, we observed a non-classical growth mode, where the axial growth rate is attenuated. Secondly, we observed structural defects at the surface of Wurtzite segments located at the bottom part of the nanowires. We explain these two phenomena as arising from a particular pathway of the group V species, specific to ultralong nanowires. Finally, the optical properties of such ultralong nanowires are studied by photoluminescence experiments.

3.
Nanoscale ; 13(40): 16952-16958, 2021 Oct 21.
Article in English | MEDLINE | ID: mdl-34610634

ABSTRACT

Nanowire (NW)-based opto-electronic devices require certain engineering in the NW geometry to realize polarized-dependent light sources and photodetectors. We present a growth procedure to produce InAs/InP quantum dot-nanowires (QD-NWs) with an elongated top-view cross-section relying on the vapor-liquid-solid method using molecular beam epitaxy. By interrupting the rotation of the sample during the radial growth sequence of the InP shell, hexagonal asymmetric (HA) NWs with long/short cross-section axes were obtained instead of the usual symmetrical shape. Polarization-resolved photoluminescence measurements have revealed a significant influence of the asymmetric shaped NWs on the InAs QD emission polarization with the photons being mainly polarized parallel to the NW long cross-section axis. A degree of linear polarization (DLP) up to 91% is obtained, being at the state of the art for the reported DLP values from QD-NWs. More importantly, the growth protocol herein is fully compatible with the current applications of HA NWs covering a wide range of devices such as polarized light emitting diodes and photodetectors.

4.
J Agric Food Chem ; 69(7): 2262-2270, 2021 Feb 24.
Article in English | MEDLINE | ID: mdl-33560838

ABSTRACT

The chemical space perceived by a consumer of champagne or other sparkling wines is progressively modified all along tasting. Real-time monitoring of gas-phase CO2 concentration was performed, through a CO2-diode laser sensor, along a two-dimensional array of nine points in the headspace of three types of glasses poured with champagne. Two original glasses with distinct headspace volumes were compared with the standard INAO tasting glass. For each of the three glass types, a kind of temperature-dependent CO2 fingerprint was revealed and discussed as a function of the glass geometry and headspace volume. Moreover, a simple model was developed, which considers the rate of decrease of the concentration of gas-phase CO2 in the headspace of a glass after the pouring process as being mainly ruled by natural air convection in ambient air. The timescale which controls the rate of decrease of gas-phase CO2 was found to highly depend on the ratio of the headspace volume to the open aperture of the glass.


Subject(s)
Carbon Dioxide , Wine , Carbon Dioxide/analysis , Glass , Taste , Temperature , Wine/analysis
5.
Nanomaterials (Basel) ; 10(12)2020 Dec 07.
Article in English | MEDLINE | ID: mdl-33297597

ABSTRACT

The epitaxy of III-V semiconductors on silicon substrates remains challenging because of lattice parameter and material polarity differences. In this work, we report on the Metal Organic Chemical Vapor Deposition (MOCVD) and characterization of InAs/GaAs Quantum Dots (QDs) epitaxially grown on quasi-nominal 300 mm Ge/Si(001) and GaAs(001) substrates. QD properties were studied by Atomic Force Microscopy (AFM) and Photoluminescence (PL) spectroscopy. A wafer level µPL mapping of the entire 300 mm Ge/Si substrate shows the homogeneity of the three-stacked InAs QDs emitting at 1.30 ± 0.04 µm at room temperature. The correlation between PL spectroscopy and numerical modeling revealed, in accordance with transmission electron microscopy images, that buried QDs had a truncated pyramidal shape with base sides and heights around 29 and 4 nm, respectively. InAs QDs on Ge/Si substrate had the same shape as QDs on GaAs substrates, with a slightly increased size and reduced luminescence intensity. Our results suggest that 1.3 µm emitting InAs QDs quantum dots can be successfully grown on CMOS compatible Ge/Si substrates.

6.
Food Res Int ; 137: 109480, 2020 11.
Article in English | MEDLINE | ID: mdl-33233142

ABSTRACT

Using data collected at a world wine trade fair, we study how the country-of-origin impacts wine traders' mental representation about wines. In the analysis we use traditional exporters in Old (France) and New (Argentina) world wine countries in comparison to non-traditional exporters in Old (Switzerland) and New (Brazil) world wine countries. Three main findings are reported. First, the country-of-origin of wines was more important on guiding participants' representations, than the category of countries the traders came from. Second, participants' evocations were more precise and specific for traditional wine-exporting countries than for less traditional wine exporting countries. Finally, the lack of traders' knowledge of wines from non-traditional wine-exporting countries produced associations and beliefs related to the image of the country itself. Our findings have important implications for the marketing and export activities of the wine industry.


Subject(s)
Wine , Argentina , Brazil , France , Humans , Wine/analysis
7.
Nanoscale ; 11(45): 21847-21855, 2019 Nov 21.
Article in English | MEDLINE | ID: mdl-31696191

ABSTRACT

Realizing single photon sources emitting in the telecom band on silicon substrates is essential to reach complementary-metal-oxide-semiconductor (CMOS) compatible devices that secure communications over long distances. In this work, we propose the monolithic growth of needlelike tapered InAs/InP quantum dot-nanowires (QD-NWs) on silicon substrates with a small taper angle and a nanowire diameter tailored to support a single mode waveguide. Such a NW geometry is obtained by a controlled balance over axial and radial growths during the gold-catalyzed growth of the NWs by molecular beam epitaxy. This allows us to investigate the impact of the taper angle on the emission properties of a single InAs/InP QD-NW. At room temperature, a Gaussian far-field emission profile in the telecom O-band with a beam divergence angle θ = 30° is demonstrated using a single InAs QD embedded in a 2° tapered InP NW. Moreover, single photon emission is observed at cryogenic temperature for an off-resonant excitation and the best result, g2(0) = 0.05, is obtained for a 7° tapered NW. This all-encompassing study paves the way for the monolithic growth on silicon of an efficient single photon source in the telecom band based on InAs/InP QD-NWs.

8.
Nanoscale ; 10(43): 20207-20217, 2018 Nov 08.
Article in English | MEDLINE | ID: mdl-30357204

ABSTRACT

One obstacle for the development of nanowire (NW) solar cells is the challenge to assess and control their nanoscale electrical properties. In this work a top-cell made of p-n GaAs core/shell NWs grown on a Si(111) substrate by Molecular Beam Epitaxy (MBE) is investigated by high resolution charge collection microscopy. Electron Beam Induced Current (EBIC) analyses of single NWs have validated the formation of a homogeneous radial p-n junction over the entire length of the NWs. The radial geometry leads to an increase of the junction area by 38 times with respect to the NW footprint. The interface between the NWs and the Si(111) substrate does not show any electrical loss, which would have led to a decrease of the EBIC signal. Single NW I-V characteristics present a diodic behavior. A model of the radial junction single NW is proposed and the electrical parameters are estimated by numerical fitting of the I-Vs and of the EBIC map. Solar cells based on NW arrays were fabricated and analyzed by EBIC microscopy, which evidenced the presence of a Schottky barrier at the NW/ITO top contact. Improvement of the top contact quality is achieved by thermal annealing at 400 °C, which strongly reduces the parasitic Schottky barrier.

9.
Nanoscale Res Lett ; 12(1): 450, 2017 Dec.
Article in English | MEDLINE | ID: mdl-28697588

ABSTRACT

This paper reports on experimental and theoretical investigations of atypical temperature-dependent photoluminescence properties of multi-stacked InAs quantum dots in close proximity to InGaAs strain-relief underlying quantum well. The InAs/InGaAs/GaAs QD heterostructure was grown by solid-source molecular beam epitaxy (SS-MBE) and investigated via photoluminescence (PL), spectroscopic ellipsometry (SE), and picosecond time-resolved photoluminescence. Distinctive double-emission peaks are observed in the PL spectra of the sample. From the excitation power-dependent and temperature-dependent PL measurements, these emission peaks are associated with the ground-state transition from InAs QDs with two different size populations. Luminescence measurements were carried out as function of temperature in the range of 10-300 K by the PL technique. The low temperature PL has shown an abnormal emission which appeared at the low energy side and is attributed to the recombination through the deep levels. The PL peak energy presents an anomalous behavior as a result of the competition process between localized and delocalized carriers. We propose the localized-state ensemble model to explain the usual photoluminescence behaviors. The quantitative study shows that the quantum well continuum states act as a transit channel for the redistribution of thermally activated carriers. We have determined the localization depth and its effect on the application of the investigated heterostructure for photovoltaic cells. The model gives an overview to a possible amelioration of the InAs/InGaAs/GaAs QDs SCs properties based on the theoretical calculations.

10.
PLoS Genet ; 13(1): e1006556, 2017 01.
Article in English | MEDLINE | ID: mdl-28085879

ABSTRACT

Bacterial pathogens often deliver effectors into host cells using type 3 secretion systems (T3SS), the extremity of which forms a translocon that perforates the host plasma membrane. The T3SS encoded by Salmonella pathogenicity island 1 (SPI-1) is genetically associated with an acyl carrier protein, IacP, whose role has remained enigmatic. In this study, using tandem affinity purification, we identify a direct protein-protein interaction between IacP and the translocon protein SipB. We show, by mass spectrometry and radiolabelling, that SipB is acylated, which provides evidence for a modification of the translocon that has not been described before. A unique and conserved cysteine residue of SipB is identified as crucial for this modification. Although acylation of SipB was not essential to virulence, we show that this posttranslational modification promoted SipB insertion into host-cell membranes and pore-forming activity linked to the SPI-1 T3SS. Cooccurrence of acyl carrier and translocon proteins in several γ- and ß-proteobacteria suggests that acylation of the translocon is conserved in these other pathogenic bacteria. These results also indicate that acyl carrier proteins, known for their involvement in metabolic pathways, have also evolved as cofactors of new bacterial protein lipidation pathways.


Subject(s)
Acyl Carrier Protein/metabolism , Type III Secretion Systems/metabolism , Acetylation , Acyl Carrier Protein/genetics , Bacterial Proteins/metabolism , Membrane Proteins/metabolism , Protein Processing, Post-Translational , Salmonella typhimurium/genetics , Salmonella typhimurium/metabolism
11.
Sensors (Basel) ; 16(10)2016 Sep 29.
Article in English | MEDLINE | ID: mdl-27690046

ABSTRACT

The concentration of greenhouse gases in the atmosphere plays an important role in the radiative effects in the Earth's climate system. Therefore, it is crucial to increase the number of atmospheric observations in order to quantify the natural sinks and emission sources. We report in this paper the development of a new compact lightweight spectrometer (1.8 kg) called AMULSE based on near infrared laser technology at 2.04 µm coupled to a 6-m open-path multipass cell. The measurements were made using the Wavelength Modulation Spectroscopy (WMS) technique and the spectrometer is hence dedicated to in situ measuring the vertical profiles of the CO2 at high precision levels (σAllan = 0.96 ppm in 1 s integration time (1σ)) and with high temporal/spatial resolution (1 Hz/5 m) using meteorological balloons. The instrument is compact, robust, cost-effective, fully autonomous, has low-power consumption, a non-intrusive probe and is plug & play. It was first calibrated and validated in the laboratory and then used for 17 successful flights up to 10 km altitude in the region Champagne-Ardenne, France in 2014. A rate of 100% of instrument recovery was validated due to the pre-localization prediction of the Météo-France based on the flight simulation software.

12.
Nano Lett ; 16(5): 2926-30, 2016 05 11.
Article in English | MEDLINE | ID: mdl-27046672

ABSTRACT

The elastic properties of InP nanowires are investigated by photoluminescence measurements under hydrostatic pressure at room temperature and experimentally deduced values of the linear pressure coefficients are obtained. The pressure-induced energy shift of the A and B transitions yields a linear pressure coefficient of αA = 88.2 ± 0.5 meV/GPa and αB = 89.3 ± 0.5 meV/GPa with a small sublinear term of ßA = ßB = -2.7 ± 0.2 meV/GPa(2). Effective hydrostatic deformation potentials of -6.12 ± 0.04 and -6.2 ± 0.04 eV are derived from the results for the A and B transitions, respectively. A decrease of the integrated intensity is observed above 0.5 GPa and is interpreted as a carrier transfer from the first to the second conduction band of the wurtzite InP.

13.
Rev Sci Instrum ; 87(2): 02A726, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26931944

ABSTRACT

The International Fusion Materials Irradiation Facility (IFMIF) linear IFMIF prototype accelerator injector dedicated to high intensity deuteron beam production has been designed, built, and tested at CEA/Saclay between 2008 and 2012. After the completion of the acceptance tests at Saclay, the injector has been fully sent to Japan. The re-assembly of the injector has been performed between March and May 2014. Then after the check-out phase, the production of the first proton beam occurred in November 2014. Hydrogen and deuteron beam commissioning is now in progress after having proceeded with the final tests on the entire injector equipment including high power diagnostics. This article reports the different phases of the injector installation pointing out the safety and security needs, as well as the first beam production results in Japan and chopper tests. Detailed operation and commissioning results (with H(+) and D(+) 100 keV beams) are reported in a second article.

14.
Nanotechnology ; 26(39): 395701, 2015 Oct 02.
Article in English | MEDLINE | ID: mdl-26349621

ABSTRACT

The emission polarization of single InAs/InP quantum dot (QD) and quantum rod (QR) nanowires is investigated at room temperature. Whereas the emission of the QRs is mainly polarized parallel to the nanowire axis, the opposite behavior is observed for the QDs. These optical properties can be explained by a combination of dielectric effects related to the nanowire geometry and to the configuration of the valence band in the nanostructure. A theoretical model and finite difference in time domain calculations are presented to describe the impact of the nanowire and the surroundings on the optical properties of the emitter. Using this model, the intrinsic degree of linear polarization of the two types of emitters is extracted. The strong polarization anisotropies indicate a valence band mixing in the QRs but not in the QDs.

15.
Opt Lett ; 32(18): 2747-9, 2007 Sep 15.
Article in English | MEDLINE | ID: mdl-17873956

ABSTRACT

Optical properties of InAs/GaAs quantum dots in micropillar cavities emitting at 1.3 microm are studied by time-resolved microphotoluminescence. The Purcell effect is observed with an enhancement of the decay rate by a factor of two for quantum dots in resonance with the cavity mode.


Subject(s)
Arsenicals/chemistry , Gallium/chemistry , Indium/chemistry , Models, Theoretical , Quantum Dots , Arsenicals/radiation effects , Computer Simulation , Gallium/radiation effects , Indium/radiation effects , Light , Materials Testing , Telecommunications
SELECTION OF CITATIONS
SEARCH DETAIL
...