Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Eur J Sport Sci ; 24(6): 653-658, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38874985

ABSTRACT

To develop and validate the Insomnia in Response to Sports-related Stress Test (IRSST) questionnaire, a new specific instrument with the goal of sensitively measuring vulnerability to sport-specific stressful situations among elite athletes. Five hundred and thirty-one competitive elite athletes (mean age = 17.6 ± 4.4 years) completed the Ford Insomnia Response to Stress Test (FIRST) questionnaire and the IRSST, a six-item questionnaire developed to assess the level of sleep disturbance in response to the commonly experienced sport-specific stressful situations. A development and validation process including substantive, structural, and external stages was used in the present study. One eigenvalue of the exploratory factor analyses was greater than 1.0 (i.e., 2.91, 48.52% of explained variance) whereas the scree test provided evidence for a one-factor solution, with all the six items achieving a loading of 0.40 or higher on the factor. Cronbach alpha was 0.77 and provided evidence for the reliability of the IRSST score. The correlation between IRSST and FIRST scores was 0.47 (p < 0.001, moderate effect size). These results provide strong evidence for construct validity, indicating that the IRSST is a promising scale for assessing the likelihood of sleep disruption due to sports-related stressful situations. The results of reliability and correlational analyses provided further evidence of the promising psychometric properties of the IRSST. We believe that the IRSST could provide to the sport and sleep science communities a sleep screening tool for use in this unique population.


Subject(s)
Athletes , Psychometrics , Sleep Initiation and Maintenance Disorders , Stress, Psychological , Humans , Sleep Initiation and Maintenance Disorders/psychology , Sleep Initiation and Maintenance Disorders/diagnosis , Surveys and Questionnaires/standards , Male , Female , Athletes/psychology , Young Adult , Adolescent , Reproducibility of Results , Adult , Sports/psychology , Factor Analysis, Statistical
2.
J Sleep Res ; : e14132, 2023 Dec 26.
Article in English | MEDLINE | ID: mdl-38148606

ABSTRACT

The present study aimed to: (1) investigate sleep architecture in response to an overload training and taper periods among endurance runners; and (2) assess the sleep benefits of a high-heat-capacity mattress topper. Twenty-one trained male endurance runners performed a 2-week usual training regimen (baseline) followed by 2-week overload and taper periods. From overload to the end of the taper period, they were assigned into two groups based on the mattress topper used: high-heat-capacity mattress topper (n = 11) or low-heat-capacity mattress topper (n = 10). Training load was assessed daily using the session rating of perceived exertion. Following each period, sleep was monitored by polysomnography, and nocturnal core body temperature was recorded throughout the night. Irrespective of the group, awakening episodes > 5 min decreased following overload compared with baseline (-0.48, p = 0.05). Independently of mattress topper, each 100 A.U. increase in 7-day training load prior to polysomnographic recording was associated with higher slow-wave sleep proportion (ß = +0.13%; p = 0.05), lower sleep-onset latency (ß = -0.49 min; p = 0.05), and a reduction in the probability of transition from N1 sleep stage to wakefulness (ß = -0.12%; p = 0.05). Sleeping on a high-heat-capacity mattress topper did not affect any sleep variable compared with a low-heat-capacity mattress topper. Increased training loads promote slow-wave sleep and sleep propensity, highlighting the adaptative nature of sleep to diurnal activity and the role of sleep in physiological recovery. Further studies are required on the potential benefits of high-heat-capacity mattress toppers on sleep architecture among athletes.

3.
J Sports Sci ; 41(17): 1605-1616, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37987739

ABSTRACT

This study investigates the impact of a training program on sleep among endurance runners and the benefits of chronically using a high-heat-capacity mattress topper (HMT). Twenty-one trained male athletes performed a 2-week usual training regimen, sleeping on a Low-heat-capacity Mattress Topper (LMT), followed by 2-week overload and taper periods. From overload, participants were assigned into two groups based on the mattress topper used: HMT (n = 11) or LMT (n = 10). Irrespective of the group, overload increased general stress and stress-reaction symptoms evaluated by questionnaires, with no decline in performance on a graded-exercise treadmill test, the majority of participant being "non-overreached" (n = 14). From a daily perspective, each additional 100 A.U. in training load, assessed using the session rating of perceived exertion, was associated with an impairment in subsequent sleep efficiency (ß = -0.2%; p < 0.01), wake after sleep onset (ß = +0.4 min; p < 0.05) and sleep onset latency (ß = +0.5 min; p < 0.05), which was unaffected by HMT use. Practitioners should be aware of sleep needs, especially during excessive training loads, whereas implementing individualised sleep strategies. Further studies should be conducted on potential benefits of HMT among athletes in various sleep conditions.


Subject(s)
Hot Temperature , Sleep , Humans , Male , Exercise , Surveys and Questionnaires , Nutritional Status
4.
Article in English | MEDLINE | ID: mdl-35457410

ABSTRACT

The impact of sleep on performance is fundamental for ultra-endurance athletes, but studies on this issue are rare. The current investigation examined the sleep and performance of a cyclist engaged in a simulated 10,000 km tour. The sleep behavior of the athlete (age, 57; height, 1.85 m; mass, 81 kg) before, during (i.e., 23 nights), and after the tour was monitored using a reduced-montage dry-electroencephalographic (EEG) device. The daily performance (i.e., number of kms) was recorded throughout the race. The cyclist set a new world record, completing 10,358 km in 24 days with a mean daily distance of ≈432 km in approximately 16 h, i.e., an average speed of ≈27 km/h. Sleep duration throughout the tour (5:13 ± 0:30) was reduced compared to the baseline sleep duration (7:00 ± 1:00), with a very large difference (ES = 2.3). The proportion of N3 during the tour (46 ± 7%) was compared to the measured N3 proportion during the baseline (27 ± 5%) and was found to be systematically outside the intra-individual variability (mean ± 1 SD), with a very large difference (ES = 3.1). This ultra-endurance event had a major influence on sleep-duration reduction and a notable modification in sleep architecture. The increase in slow-wave sleep during the race may be linked to the role of slow-wave sleep in physiological recovery.


Subject(s)
Bicycling , Physical Endurance , Athletes , Bicycling/physiology , Humans , Middle Aged , Nutritional Status , Physical Endurance/physiology , Sleep/physiology
5.
Front Sports Act Living ; 3: 659990, 2021.
Article in English | MEDLINE | ID: mdl-33870188

ABSTRACT

Introduction: The aim of the present study was to investigate the effect of the depth of cold water immersion (CWI) (whole-body with head immersed and partial-body CWI) after high-intensity, intermittent running exercise on sleep architecture and recovery kinetics among well-trained runners. Methods: In a randomized, counterbalanced order, 12 well-trained male endurance runners ( V . O2max = 66.0 ± 3.9 ml·min-1·kg-1) performed a simulated trail (≈18:00) on a motorized treadmill followed by CWI (13.3 ± 0.2°C) for 10 min: whole-body immersion including the head (WHOLE; n = 12), partial-body immersion up to the iliac crest (PARTIAL; n = 12), and, finally, an out-of-water control condition (CONT; n = 10). Markers of fatigue and muscle damage-maximal voluntary isometric contraction (MVIC), countermovement jump (CMJ), plasma creatine kinase [CK], and subjective ratings-were recorded until 48 h after the simulated trail. After each condition, nocturnal core body temperature (T core) was measured, whereas sleep and heart rate variability were assessed using polysomnography. Results: There was a lower T core induced by WHOLE than CONT from the end of immersion to 80 min after the start of immersion (p < 0.05). Slow-wave sleep (SWS) proportion was higher (p < 0.05) during the first 180 min of the night in WHOLE compared with PARTIAL. WHOLE and PARTIAL induced a significant (p < 0.05) decrease in arousal for the duration of the night compared with CONT, while only WHOLE decreased limb movements compared with CONT (p < 0.01) for the duration of the night. Heart rate variability analysis showed a significant reduction (p < 0.05) in RMSSD, low frequency (LF), and high frequency (HF) in WHOLE compared with both PARTIAL and CONT during the first sequence of SWS. No differences between conditions were observed for any markers of fatigue and muscle damage (p > 0.05) throughout the 48-h recovery period. Conclusion: WHOLE reduced arousal and limb movement and enhanced SWS proportion during the first part of the night, which may be particularly useful in the athlete's recovery process after exercise. Future studies are, however, required to assess whether such positive sleep outcomes may result in overall recovery optimization.

SELECTION OF CITATIONS
SEARCH DETAIL
...