Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 54
Filter
Add more filters










Publication year range
2.
Arthrosc Tech ; 13(4): 102911, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38690337

ABSTRACT

Lateral meniscus tears at the junction of the Wrisberg ligament and posterior horn are meniscocapsular injuries often seen with injury to the anterior cruciate ligament. Such lateral meniscus posterior horn lesions have been termed zip lesions. The lateral meniscus posterior horn is the major restraint for the pivot shift maneuver. Considering the morphology of condyles, lateral meniscus preservation and repair of unstable meniscocapsular posterior tear are needed to prevent future osteoarthritis. In this Technical Note, we aim to classify zip lesions of the posterior horn of the lateral meniscus. Zip lesions are located posteriorly and often are missed on magnetic resonance imaging and routine diagnostic arthroscopy. We recommend looking from the anteromedial portal and exploring the posterolateral compartment to identify hidden zip lesions, equivalent to medial-sided ramp lesions. We describe various all-inside techniques to repair these inaccessible tears.

3.
Chempluschem ; : e202400107, 2024 May 06.
Article in English | MEDLINE | ID: mdl-38708570

ABSTRACT

Metal-organic frameworks (MOF) hold great promise for CO2 adsorption due to their high surface areas, tunable pore sizes, and the ability to modify their chemical properties to enhance CO2 affinity. MOFs tagged with functional groups either at linker or metal sites have shown improved CO2 uptake capacity and selectivity. This study focuses on investigating the potential of selective CO2 adsorption using amino functionalization of linker forming Ce-UiO-66. The physicochemical properties and characteristics of MOFs to determine the degree of amino functionalization and structural stability were examined using powder X-ray diffraction (PXRD), Fourier transformer infra-red (FTIR), scanning electron microscopy (SEM), thermogravimetric analysis (TGA), and N2 porosimetry and specific surface area (BET). This work unveils a novel array of results on CO2, N2 and water vapour adsorption on Ce-UiO-66-NH2. The amino-functionalized Ce-UiO-66-NH2 shows 63 % higher CO2 uptake and 84 % higher CO2/N2 selectivity at 273 K and 1 bar over Ce-UiO-66. Ce-UiO-66-NH2 also shows excellent structural stability after gas and vapour sorption making Ce-UiO-66-NH2 potential adsorbent for CO2 capture.

4.
Acta Diabetol ; 61(7): 879-896, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38521818

ABSTRACT

AIMS: This study aims to develop an advanced model for the classification of Diabetic Macular Edema (DME) using deep learning techniques. Specifically, the objective is to introduce a novel architecture, SSCSAC-Net, that leverages self-supervised learning and category-selective attention mechanisms to improve the precision of DME classification. METHODS: The proposed SSCSAC-Net integrates self-supervised learning to effectively utilize unlabeled data for learning robust features related to DME. Additionally, it incorporates a category-specific attention mechanism and a domain-specific layer into the ResNet-152 base architecture. The model is trained using an ensemble of unsupervised and supervised learning techniques. Benchmark datasets are utilized for testing the model's performance, ensuring its robustness and generalizability across different data distributions. RESULTS: Evaluation of the SSCSAC-Net on multiple datasets demonstrates its superior performance compared to existing techniques. The model achieves high accuracy, precision, and recall rates, with an accuracy of 98.7%, precision of 98.6%, and recall of 98.8%. Furthermore, the incorporation of self-supervised learning reduces the dependency on extensive labeled data, making the solution more scalable and cost-effective. CONCLUSIONS: The proposed SSCSAC-Net represents a significant advancement in automated DME classification. By effectively using self-supervised learning and attention mechanisms, the model offers improved accuracy in identifying DME-related features within retinal images. Its robustness and generalizability across different datasets highlight its potential for clinical applications, providing a valuable tool for clinicians in diagnosing DME effectively.


Subject(s)
Deep Learning , Diabetic Retinopathy , Macular Edema , Humans , Macular Edema/classification , Macular Edema/diagnosis , Diabetic Retinopathy/classification , Diabetic Retinopathy/diagnosis , Supervised Machine Learning , Neural Networks, Computer
5.
Arthrosc Tech ; 13(1): 102807, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38312875

ABSTRACT

The meniscus root is an attachment of the anterior and posterior horns of the meniscus onto the tibia, and its primary function is to prevent extrusion under axial load. Meniscus root tear constitutes 15% to 20% of meniscus tear. With the increased incidence of root tears being diagnosed commonly, many newer morphologic patterns of root tears have been detected, and the need to extend the conventional classification arises. At the same time, preserving the meniscus root necessitates novel techniques to repair this newer pattern. In this Technical Note, we describe the extended classification of root tears and arthroscopic repair techniques to achieve stable and secure fixation of meniscus roots.

6.
Front Plant Sci ; 14: 1280314, 2023.
Article in English | MEDLINE | ID: mdl-38023880

ABSTRACT

Light-blocking films (LBFs) can contribute to significant energy savings for protected cropping via altering light transmitting, such as UVA, photosynthetically active radiation, blue and red spectra affecting photosynthesis, and capsicum yield. Here, we investigated the effects of LBF on orange color capsicum (O06614, Capsicum annuum L.) fruit transcriptome at 35 (mature green) and 65 (mature ripe) days after pollination (DAP) relative to untreated control in a high-technology glasshouse. The results of targeted metabolites showed that LBF significantly promotes the percentage of lutein but decreased the percentage of zeaxanthin and neoxanthin only at 35 DAP. At 35 DAP, fruits were less impacted by LBF treatment (versus control) with a total of 1,192 differentially expressed genes (DEGs) compared with that at 65 DAP with 2,654 DEGs. Response to stress and response to light stimulus in biological process of Gene Ontology were found in 65-DAP fruits under LBF vs. control, and clustering analysis revealed a predominant role of light receptors and phytohormone signaling transduction as well as starch and sucrose metabolism in LBF adaptation. The light-signaling DEGs, UV light receptor UVR8, transcription factors phytochrome-interacting factor 4 (PIF4), and an E3 ubiquitin ligase (COP1) were significantly downregulated at 65 DAP. Moreover, key DEGs in starch and sucrose metabolism (SUS, SUC, and INV), carotenoid synthesis (PSY2 and BCH1), ascorbic acid biosynthesis (VTC2, AAO, and GME), abscisic acid (ABA) signaling (NCED3, ABA2, AO4, and PYL2/4), and phenylpropanoid biosynthesis (PAL and DFR) are important for the adaptation of 65-DAP fruits to LBF. Our results provide new candidate genes for improving quality traits of low-light adaptation of capsicum in protected cropping.

7.
Article in English | MEDLINE | ID: mdl-37227645

ABSTRACT

Bullseye and Pacu fish processing waste were valorized through its conversion into functional protein isolates, followed by the utilization of recovered proteins to supplement oat-based cookies at different levels (0, 2, 4, 6, 8 and 10 g/100 g) and baking temperatures (100, 150, 170, 180, 190 ˚C). With different replacement ratios and baking temperatures, the best selection was made at (4 and 6%) and baking temperatures (160 and 170 ˚C) for BPI (Bullseye protein isolate) and PPI (Pacu protein isolate) based cookies, respectively based on sensory and textural characteristics. The developed products were analyzed for its nutritional, physical, textural, and sensory quality. No significant differences were found in the moisture and ash contents of the cookies from different lots, while the protein content was highest for cookies with 6% PPI. The spread ratio was lower reported for the control cookies compared to the fish protein isolate-based counterpart (p < 0.05), and it decreased with increasing thickness of cookies. Significantly higher total essential amino acid values were obtained in cookies supplemented with 6% Pacu protein isolates, whereas 4% Bullseye protein isolate-supplemented cookies were higher in total non-essential amino acid content. The total plate count was higher in control cookies (0.35 ± 0.33 cfu/g) compared to fish protein isolate-supplemented cookies. The hardness values were maximum for control group cookies (19.14 ± 0.98 N) compared to protein isolate incorporated cookies (17.22 ± 1.05 N and 16.26 ± 0.9 N). However, the difference among the all-treatment group is not significant (p > 0.05).

8.
Sci Rep ; 13(1): 4530, 2023 Mar 20.
Article in English | MEDLINE | ID: mdl-36941330

ABSTRACT

The effective removal and displacement of fluids is important in many industrial and environmental applications, such as for operation and cleaning of process equipment, fluid injection in porous media for oil recovery or aquifer remediation, or for achieving subsurface zonal isolation in new or abandoned wells. The accurate measurement of the residual fluid wall film left behind after displacement by a cleaning fluid is a long-standing challenge, particularly so for very thin fluid films where the thickness can be of the order of micrometer. We focus on the characterization of oil films left on the wall of a horizontal pipe after the pipe has been displaced by water, and develop a novel, non-intrusive analytical technique that allows the use of relevant pipe materials. The oil that originally occupies the pipe is stained by a hydrophobic dye Nile red, and an intermediate organic solvent is used to collect the residual oil volume that remains after displacing the pipe with a known volume of water. Finally, ultraviolet-visible spectroscopy is used to measure the Nile red concentration in the collected fluid, which is proportional to the residual volume of oil in the pipe. We demonstrate the methodology by conducting experiments where the displacing fluid is injected at two different imposed velocities, and where the injected fluid volume is varied. As expected, we find a gradual thinning of the oil film with increasing injected fluid volume. We compare the measured film thicknesses to a displacement model based on the steady velocity profile in a pipe, and find that experiments consistently produce smaller film thicknesses. This developed technique allows quantification of displacement and cleaning mechanisms involved in immiscible displacements at laminar, transitional and turbulent regimes, for different non-Newtonian fluid pairs, and for different realistic pipe materials and surface roughnesses.

9.
Bioelectrochemistry ; 150: 108347, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36549174

ABSTRACT

Microelectrode-based cell chip studies for cellular responses often require improved adhesion and growth conditions for efficient cellular diagnosis and high throughput screening in drug discovery. Cell-chip studies are often performed on gold electrodes due to their biocompatibility, and stability, but the electrode-electrolyte interfacial capacitance is the main drawback to the overall sensitivity of the detection system. Thus, here, we developed reduced graphene oxide-polyaniline-modified gold microelectrodes for real-time impedance-based monitoring of human gastric adenocarcinoma cancer (MKN-1) cells. The impedance characterization on modified electrodes showed 28-fold enhanced conductivity than the bare electrodes, and the spectra were modeled with proper equivalent circuits to extrapolate the values of circuit elements. The impedance of both time-and frequency-dependent measurements of cell-covered modified electrodes with equivalent model circuits was analyzed to achieve cellular behavior, such as adhesion, spreading, proliferation, and influence of anti-cancer agents. The normalized impedance at 41.5 kHz (|Z|norm 41 kHz) was selected to monitor the cell growth analysis, which was found linear with the proliferation of adherent cells along with the influence of the anticancer drug agent on the MKN-1 cells. The synergistic effects and biocompatible nature of PANI-RGO modifications improved the overall sensitivity for the cell-growth studies of MKN-1 cells.


Subject(s)
Graphite , Neoplasms , Humans , Microelectrodes , Electric Impedance , Gold
10.
Front Plant Sci ; 14: 1277037, 2023.
Article in English | MEDLINE | ID: mdl-38179477

ABSTRACT

High energy costs are a barrier to producing high-quality produce at protected cropping facilities. A potential solution to mitigate high energy costs is film technology, which blocks heat-producing radiation; however, the alteration of the light environment by these films may impact crop yield and quality. Previous studies have assessed the impact of ULR 80 [i.e., light-blocking film (LBF)] on crop yield and photosynthetically active radiation (PAR); however, an assessment of the spectral environment over different seasons is important to understand potential crop impacts through different developmental phases. In this study, two varieties (red and orange) of Capsicum annuum were grown across two crop cycles: one cycle with primary crop growth in the autumn (i.e., autumn experiment [AE]) and the other with primary crop growth in the summer (i.e., summer experiment [SE]). LBF reduced PAR (roof level: 26%-30%, plant canopy level: 8%-25%) and net radiation (36%-66%). LBF also reduced total diffuse PAR (AE: 8%, SE: 15%), but the diffuse fraction of PAR increased by 7% and 9% for AE and SE, respectively, potentially resulting in differential light penetration throughout the canopy across treatments. LBF reduced near-infrared radiation (700 nm-2,500 nm), including far-red (700 nm-780 nm) at mid- and lower-canopy levels. LBF significantly altered light quantity and quality, which determined the amount of time that the crop grew under light-limited (<12 mol m-2 d-1) versus sufficient light conditions. In AE, crops were established and grown under light-limited conditions for 57% of the growing season, whereas in SE, crops were established and grown under sufficient light conditions for 66% of the growing season. Overall, LBF significantly reduced the yield in SE for both varieties (red: 29%; orange: 16%), but not in AE. The light changes in different seasons in response to LBF suggest that planting time is crucial for maximizing fruit yield when grown under a film that reduces light quantity. LBF may be unsuitable for year-round production of capsicum, and additional development of LBF is required for the film to be beneficial for saving energy during production and sustaining good crop yields in protected cropping.

11.
Arthrosc Tech ; 12(12): e2141-e2151, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38196880

ABSTRACT

Injury to the superficial medial collateral ligament (MCL) is treated conservatively for low-grade injury and with surgery for high-grade injury, especially in association with cruciate ligament injury. Acute injuries are treated with MCL repair, and chronic injury requires reconstruction. Anatomic MCL reconstruction can be done using free allograft or autograft and fixed using screws or suspensory fixation. We describe here an anatomic technique that is a modification of a Danish technique in which we reroute the semitendinosus, keeping its tibial attachment intact. The semitendinosus is rerouted anatomically in the tibial tunnel, and a graft is then passed anatomically in the femoral tunnel. The graft is fixed in both tunnels with adjustable loop suspensory fixation, which gives the unique advantage of controlled tensioning of the graft for MCL reconstruction. In this technique further re-tensioning is possible if the knee is unstable in valgus stress, even after final fixation.

12.
Anal Chem ; 94(49): 17020-17030, 2022 12 13.
Article in English | MEDLINE | ID: mdl-36414244

ABSTRACT

A novel electrochemical sensor was constructed based on an enzyme-mediated physiological reaction between neurotransmitter serotonin per-oxidation to reconstruct dual-molecule 4,4'-dimeric-serotonin self-assembled derivative, and the potential biomedical application of the multi-functional nano-platform was explored. Serotonin accelerated the catalytic activity to form a dual molecule at the C4 position and created phenolic radical-radical coupling intermediates in a peroxidase reaction system. Here, 4,4' dimeric-serotonin possessed the capability to recognize intermolecular interactions between amine groups. The excellent quenching effects on top of the gold surface electrode system archive logically inexpensive and straightforward analytical demands. In biochemical sensing analysis, the serotonin dimerization concept demonstrated a robust, low-cost, and highly sensitive immunosensor, presenting the potential of quantifying serotonin at point-of-care (POC) testing. The high-specificity serotonin electrochemical sensor had a limit of detection (LOD) of 0.9 nM in phosphate buffer and 1.4 nM in human serum samples and a linear range of 10 to 400 with a sensitivity of 2.0 × 10-2 nM. The bivalent 4,4'-dimer-serotonin interaction strategy provides a promising platform for serotonin biosensing with high specificity, sensitivity, selectivity, stability, and reproducibility. The self-assembling gold surface electrochemical system presents a new analytical method for explicitly detecting tiny neurotransmitter-responsive serotonin neuromolecules.


Subject(s)
Biosensing Techniques , Metal Nanoparticles , Humans , Electrochemical Techniques/methods , Biosensing Techniques/methods , Serotonin/analysis , Reproducibility of Results , Immunoassay/methods , Gold/chemistry , Electrodes , Limit of Detection , Polymers , Neurotransmitter Agents/analysis , Metal Nanoparticles/chemistry
13.
Biosensors (Basel) ; 12(7)2022 Jun 25.
Article in English | MEDLINE | ID: mdl-35884257

ABSTRACT

The last decade witnessed the emergence of a new family of 2D transition metal carbides and nitrides named MXenes, which quickly gained momentum due to their exceptional electrical, mechanical, optical, and tunable functionalities. These outstanding properties also rendered them attractive materials for biomedical and biosensing applications, including drug delivery systems, antimicrobial applications, tissue engineering, sensor probes, auxiliary agents for photothermal therapy and hyperthermia applications, etc. The hydrophilic nature of MXenes with rich surface functional groups is advantageous for biomedical applications over hydrophobic nanoparticles that may require complicated surface modifications. As an emerging 2D material with numerous phases and endless possible combinations with other 2D materials, 1D materials, nanoparticles, macromolecules, polymers, etc., MXenes opened a vast terra incognita for diverse biomedical applications. Recently, MXene research picked up the pace and resulted in a flood of literature reports with significant advancements in the biomedical field. In this context, this review will discuss the recent advancements, design principles, and working mechanisms of some interesting MXene-based biomedical applications. It also includes major progress, as well as key challenges of various types of MXenes and functional MXenes in conjugation with drug molecules, metallic nanoparticles, polymeric substrates, and other macromolecules. Finally, the future possibilities and challenges of this magnificent material are discussed in detail.


Subject(s)
Biomedical Research , Drug Delivery Systems , Anti-Bacterial Agents/chemistry
14.
Plant Mol Biol ; 110(4-5): 365-384, 2022 Nov.
Article in English | MEDLINE | ID: mdl-35648324

ABSTRACT

KEY MESSAGE: Heat stress (HS) under well-watered conditions was not detrimental to leaf photosynthesis or yield but modified the elevated CO2 response of photosynthesis and yield in two contrasting wheat cultivars. Climate change is increasing the frequency of extreme events such as heat waves, adversely affecting crop productivity. While positive impacts of elevated carbon dioxide (eCO2) on crop productivity are evident, the interactive effects of eCO2 and environmental stresses are still unclear. To investigate the interactive effects of elevated CO2 and heat stress (HS), we grew two contrasting wheat cultivars, early-maturing Scout and high-tillering Yitpi, under non-limiting water and nutrients at ambient (aCO2, 450 ppm) or elevated (eCO2, 650 ppm) CO2 and 22 °C in the glasshouse. Plants were exposed to two 3-day HS cycles at the vegetative (38.1 °C) and/or flowering (33.5 °C) stage. At aCO2, both wheat cultivars showed similar responses of photosynthesis and mesophyll conductance to temperature and produced similar grain yield. Relative to aCO2, eCO2 enhanced photosynthesis rate and reduced stomatal conductance and maximal carboxylation rate (Vcmax). During HS, high temperature stimulated photosynthesis at eCO2 in both cultivars, while eCO2 stimulated photosynthesis in Scout. Electron transport rate (Jmax) was unaffected by any treatment. eCO2 equally enhanced biomass and grain yield of both cultivars in control, but not HS, plants. HS reduced biomass and yield of Scout at eCO2. Yitpi, the cultivar with higher grain nitrogen, underwent a trade-off between grain yield and nitrogen. In conclusion, eCO2 improved photosynthesis of control and HS wheat, and improved biomass and grain yield of control plants only. Under well-watered conditions, HS was not detrimental to photosynthesis or growth but precluded a yield response to eCO2.


Subject(s)
Carbon Dioxide , Triticum , Biomass , Carbon Dioxide/pharmacology , Water , Photosynthesis/physiology , Heat-Shock Response , Edible Grain , Nitrogen/pharmacology
15.
Plants (Basel) ; 11(7)2022 Apr 04.
Article in English | MEDLINE | ID: mdl-35406965

ABSTRACT

Smart Glass Film (SGF) is a glasshouse covering material designed to permit 80% transmission of photosynthetically active light and block heat-generating solar energy. SGF can reduce crop water and nutrient consumption and improve glasshouse energy use efficiency yet can reduce crop yield. The effect of SGF on the postharvest shelf life of fruits remains unknown. Two capsicum varieties, Red (Gina) and Orange (O06614), were cultivated within a glasshouse covered in SGF to assess fruit quality and shelf life during the winter season. SGF reduced cuticle thickness in the Red cultivar (5%) and decreased ascorbic acid in both cultivars (9-14%) without altering the overall morphology of the mature fruits. The ratio of total soluble solids (TSSs) to titratable acidity (TA) was significantly higher in Red (29%) and Orange (89%) cultivars grown under SGF. The Red fruits had a thicker cuticle that reduced water loss and extended shelf life when compared to the Orange fruits, yet neither water loss nor firmness were impacted by SGF. Reducing the storage temperature to 2 °C and increasing relative humidity to 90% extended the shelf life in both cultivars without evidence of chilling injury. In summary, SGF had minimal impact on fruit development and postharvest traits and did not compromise the shelf life of mature fruits. SGF provides a promising technology to block heat-generating solar radiation energy without affecting fruit ripening and marketable quality of capsicum fruits grown during the winter season.

16.
Bioelectrochemistry ; 144: 108046, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35030457

ABSTRACT

We have developed a powerful biosensing strategy for immobilizing histidine-tagged (His-Tag)-oriented recombinant nano-protein immobilization on a chemically modified glassy carbon electrode (GCE) surfaces via (S)-N-(5-amino-1-carboxypentyl)iminodiacetic acid (ANTA) acting as a chelating Ni2+ centered interaction. Here, we introduce a label-free electro-sensor to quantify cortisol levels in saliva samples for point-of-care testing (POCT). The high specificity of the chemically modified GCE was established by genetically bio-engineered metal-binding sites on the selected recombinant apoferritin (R-AFTN) nano-protein to impart functionality to its surface and by coating the carbon surface with the self-assembled monolayers of 4-aminobenzoic acid (4-ABA) attached to ANTA groups complexed with Ni2+ transition metal ions. Despite the variety of conventional assays available to monitor cortisol levels, they require bulky exterior outfits, which hinders use in the healthcare systems. Therefore, we performed a rapid, easy-to-implement, and low-cost quantitative electro-sensor to enable the real-time detection of cortisol levels in saliva samples. As a result, the cortisol electro-sensor fabricated with high specificity utilizing a GCE could measure cortisol levels with a detection limit of 0.95 ng/ml and sensitivity of 7.91 µA/(ng/mL), which is a practical approach in human saliva. Thus, protein nanoprobe-based cortisol biosensing showed high sensitivity and selectivity for the direct electro-sensing of cortisol for POCT.


Subject(s)
Hydrocortisone
17.
Anal Bioanal Chem ; 414(10): 3205-3217, 2022 Apr.
Article in English | MEDLINE | ID: mdl-34617153

ABSTRACT

Sensitive and selective determination of protein biomarkers with high accuracy often remains a great challenge due to their existence in the human body at an exceptionally low concentration level. Therefore, sensing mechanisms that are easy to use, simple, and capable of accurate quantification of analyte are still in development to detect biomarkers at a low concentration level. To meet this end, we demonstrated a methodology to detect thrombin in serum at low concentration levels using polypyrrole (PPy)-palladium (Pd)nanoparticle-based hybrid transducers using liposomes encapsulated redox marker as a label. The morphology of Ppy-Pd composites was characterized by scanning electron microscopy, and the hybrid structure provided excellent binding and detection platform for thrombin detection in both buffer and serum solutions. For quantitative measurement of thrombin in PBS and serum, the change in current was monitored using differential pulse voltammetry, and the calculated limit of quantification (LOQ) and limit of detection (LOD) for the linear segment (0.1-1000 nM of thrombin) were 1.1 pM and 0.3 pM, in serum, respectively. The sensors also exhibited good stability and excellent selectivity towards the detection of thrombin, and thus make it a strong candidate for adopting its sensing applications in biomarker detection technologies.


Subject(s)
Aptamers, Nucleotide , Biosensing Techniques , Nanocomposites , Aptamers, Nucleotide/chemistry , Biosensing Techniques/methods , Humans , Limit of Detection , Liposomes , Palladium/chemistry , Polymers/chemistry , Pyrroles/chemistry , Thrombin/chemistry
18.
Glob Chall ; 5(12): 2100001, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34938573

ABSTRACT

Metal-organic frameworks (MOFs) are a class of porous organic-inorganic solids extensively explored for numerous applications owing to their catalytic activity and high surface area. In this work MOF thin films deposited in a one-step, molecular layer deposition (MLD), an all-gas-phase process, on glass wool fibers are characterized by X-ray diffraction, Fourier transform infrared spectroscopy, scanning electron microscopy, and their capabilities towards toxic industrial chemical (TIC) capture and chemical warfare agents (CWA) degradation are investigated. It is shown that despite low volume of the active material used, MOFs thin films are capable of removal of harmful gaseous chemicals from air stream and CWA from neutral aqueous environment. The results confirm that the MLD-deposited MOF thin films, amorphous and crystalline, are suitable materials for use in air filtration, decontamination, and physical protection against CWA and TIC.

19.
Biosens Bioelectron ; 191: 113447, 2021 Nov 01.
Article in English | MEDLINE | ID: mdl-34175648

ABSTRACT

Chemically modulating monoamine neurotransmitter serotonin undergoes a physiological reaction of enzyme intermediated peroxidation to reconstruct dimeric self-assembled complex. A standard bivalent ligand approach dimeric serotonin increases structural and functional scaffolding with recognition-binding sites that are fundamentally more friendly than monovalent binding sites. Dimerization reaction accelerates the catalytic activity of one-electron oxidation at the C(4) position of serotonin to generate dual phenolic radicals in the presence of horseradish (HRP) and hydrogen peroxide (H2O2). Herein, we suggest the dimeric serotonin-based colorimetric assay, which presents a new rapid, sensitive, selective, and quantitative visualization. The dimeric serotonin possesses the capability to recognize intermolecular interaction units that cause aggregation scaffold of gold nanoparticles (GNPs), providing inexpensive and straightforward analytical needs. As a proof of visual and spectral analysis, peroxidative dimeric serotonin demonstrated sensitive and robust results. The calorimetric method enables highly sensitive detection of serotonin in phosphate buffer, and in human serum samples at nanomolar levels with a LOD of 2.6 nM and 2.81 nM, respectively, and the sensor possesses a dynamic range of 100-300 nM in buffer condition. Also, as proof of concept, visible color imaging of immunosensors which is appropriate for fast visible testing at detection limits as low as 2.90 nM concentration.


Subject(s)
Biosensing Techniques , Metal Nanoparticles , Colorimetry , Gold , Humans , Hydrogen Peroxide , Immunoassay , Ligands , Limit of Detection , Serotonin
20.
3 Biotech ; 11(3): 134, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33680699

ABSTRACT

Pink stem borer, Sesamia inferens (Walker, 1856) (Lepidoptera: Noctuidae) is reported to infest many graminaceous crops and cause significant losses. S. inferens cause damage by killing the central shoot and producing a characteristic symptom called "dead heart". Since graminaceous crops are an important source of food for humans and their livestock, impetus should be given on designing efficient management strategies against pink stem borer. The study of genetic variability of pest populations enables to interpret the ecological investigations correctly and also helps to comprehend the dissimilar response of pest to management tactics. The present study was undertaken to evaluate the diversity in S. inferens populations using mitochondrial cytochrome oxidase subunit I sequences from India, Pakistan, China and Indonesia. Analysis revealed a very low nucleotide diversity in Indian populations (π = 0.00981), as compared to a high nucleotide diversity in the sequences outside India (π = 0.4989). The phylogenetic analysis also did not show any clustering among populations within India and Pakistan. However, the nearest neighbour for the Indian and Pakistan population is a sequence from Indonesia followed by China indicating possible ancestral background. This is the maiden attempt to assess the molecular diversity of Indian populations in comparison to populations from other Asian countries. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s13205-021-02678-y.

SELECTION OF CITATIONS
SEARCH DETAIL
...