Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Chem Chem Phys ; 24(3): 1840-1848, 2022 Jan 19.
Article in English | MEDLINE | ID: mdl-34988572

ABSTRACT

Cost-effective and sustainable battery materials for large-scale batteries are the need of the hour to garner renewable energy with high-performance metal battery technologies. Here, we report the high-performance and long cycle life electrolyte prepared from low-cost triethylamine hydrochloride (Et3NHCl) and aluminum chloride (AlCl3) termed as (TA) with different concentrations of magnesium diethylphosphate (Mg(DEP)2) salt. The optimized ratio of the 0.1 M Mg(DEP)2 electrolyte has shown a high ionic conductivity of 4.5 × 10-3 S cm-1 at ambient temperature and good anodic stability of 2.41 V vs. Mg/Mg2+. The dissolution/deposition of magnesium (Mg) on a Pt working electrode was systematically analyzed in this electrolyte. Cyclic voltammetry (CV) of the Mg-graphite battery was used to probe the intercalation/de-intercalation of Mg-AlCl4- ions into/from the graphite layer structure. This was confirmed by various analytical techniques, such as energy dispersive X-ray spectroscopy, X-ray diffraction technique and X-ray photoemission spectroscopy. Notably, during the galvanostatic study analysis, the assembled Mg cell delivered a high discharge capacity of 115 mA h g-1 at a high C/10 rate, with more than 180 cycles at >80% coulombic efficiency. This electrolyte will be helpful in grid-scale power storage systems in future generations.

2.
Phys Chem Chem Phys ; 18(24): 16116-26, 2016 Jun 28.
Article in English | MEDLINE | ID: mdl-27004982

ABSTRACT

The present study deals with an investigation of two novel imidazolium ionic liquids bearing ether-ether (1O2O2-Im-2O1) or ether-siloxane (1O2O2-Im-1SiOSi) functionalities with TFSI anion and their mixtures with propylene carbonate as electrolytes in lithium-ion batteries. The electrochemical stability and conductivity of these novel ILs were analyzed by electrochemical studies, such as cyclic voltammetry, linear sweep voltammetry and impedance measurements. The applicability of these ILs as electrolytes in Li-ion batteries was studied in the presence of a high concentration of LiTFSI (1 mol kg(-1) electrolyte) and the ether-ether IL was shown to possess a high electrochemical stability window (ESW) of 5.9 V and good conductivity of 2.2 mS cm(-1). The electrochemical stability and conductivity were further complimented by self-diffusion of different ions using pulsed gradient spin-echo (PGSE) NMR, viscosity and thermal properties like TGA and DSC analysis. More importantly, we explored the effect of temperature on the electrochemical stability and conductivity of these ILs by electrochemical impedance spectroscopy.

SELECTION OF CITATIONS
SEARCH DETAIL
...