Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
R Soc Open Sci ; 11(3): 230603, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38481981

ABSTRACT

Giant sequoias (Sequoiadendron giganteum) are some of the UK's largest trees, despite only being introduced in the mid-nineteenth century. There are an estimated half a million giant sequoias and closely related coastal redwoods (Sequoia sempervirens) in the UK. Given the recent interest in planting more trees, partly due to their carbon sequestration potential and also their undoubted public appeal, an understanding of their growth capability is important. However, little is known about their growth and carbon uptake under UK conditions. Here, we focus on S. giganteum and use three-dimensional terrestrial laser scanning to perform detailed structural measurements of 97 individuals at three sites covering a range of different conditions, to estimate aboveground biomass (AGB) and annual biomass accumulation rates. We show that UK-grown S. giganteum can sequester carbon at a rate of 85 kg yr-1, varying with climate, management and age. We develop new UK-specific allometric models for S. giganteum that fit the observed AGB with r 2 > 0.93 and bias < 2% and can be used to estimate S. giganteum biomass more generally. This study provides the first estimate of the growth and carbon sequestration of UK open-grown S. giganteum and provides a baseline for estimating their longer-term carbon sequestration capacity.

2.
Glob Chang Biol ; 25(11): 3591-3608, 2019 11.
Article in English | MEDLINE | ID: mdl-31343099

ABSTRACT

Plant phenology-the timing of cyclic or recurrent biological events in plants-offers insight into the ecology, evolution, and seasonality of plant-mediated ecosystem processes. Traditionally studied phenologies are readily apparent, such as flowering events, germination timing, and season-initiating budbreak. However, a broad range of phenologies that are fundamental to the ecology and evolution of plants, and to global biogeochemical cycles and climate change predictions, have been neglected because they are "cryptic"-that is, hidden from view (e.g., root production) or difficult to distinguish and interpret based on common measurements at typical scales of examination (e.g., leaf turnover in evergreen forests). We illustrate how capturing cryptic phenology can advance scientific understanding with two case studies: wood phenology in a deciduous forest of the northeastern USA and leaf phenology in tropical evergreen forests of Amazonia. Drawing on these case studies and other literature, we argue that conceptualizing and characterizing cryptic plant phenology is needed for understanding and accurate prediction at many scales from organisms to ecosystems. We recommend avenues of empirical and modeling research to accelerate discovery of cryptic phenological patterns, to understand their causes and consequences, and to represent these processes in terrestrial biosphere models.


Subject(s)
Ecosystem , Forests , Brazil , Climate Change , Seasons
3.
Sci Total Environ ; 666: 1301-1315, 2019 May 20.
Article in English | MEDLINE | ID: mdl-30970495

ABSTRACT

Recent work has shown that leaf traits and spectral properties change through time and/or seasonally as leaves age. Current field and hyperspectral methods used to estimate canopy leaf traits could, therefore, be significantly biased by variation in leaf age. To explore the magnitude of this effect, we used a phenological dataset comprised of leaves of different leaf age groups -developmental, mature, senescent and mixed-age- from canopy and emergent tropical trees in southern Peru. We tested the performance of partial least squares regression models developed from these different age groups when predicting traits for leaves of different ages on both a mass and area basis. Overall, area-based models outperformed mass-based models with a striking improvement in prediction observed for area-based leaf carbon (Carea) estimates. We observed trait-specific age effects in all mass-based models while area-based models displayed age effects in mixed-age leaf groups for Parea and Narea. Spectral coefficients and variable importance in projection (VIPs) also reflected age effects. Both mass- and area-based models for all five leaf traits displayed age/temporal sensitivity when we tested their ability to predict the traits of leaves of other age groups. Importantly, mass-based mature models displayed the worst overall performance when predicting the traits of leaves from other age groups. These results indicate that the widely adopted approach of using fully expanded mature leaves to calibrate models that estimate remotely-sensed tree canopy traits introduces error that can bias results depending on the phenological stage of canopy leaves. To achieve temporally stable models, spectroscopic studies should consider producing area-based estimates as well as calibrating models with leaves of different age groups as they present themselves through the growing season. We discuss the implications of this for surveys of canopies with synchronised and unsynchronised leaf phenology.


Subject(s)
Phenotype , Plant Leaves/physiology , Carbon/analysis , Least-Squares Analysis , Models, Biological , Peru , Plant Leaves/growth & development , Seasons , Spectrum Analysis
4.
New Phytol ; 214(3): 1033-1048, 2017 May.
Article in English | MEDLINE | ID: mdl-27381054

ABSTRACT

Leaf age structures the phenology and development of plants, as well as the evolution of leaf traits over life histories. However, a general method for efficiently estimating leaf age across forests and canopy environments is lacking. Here, we explored the potential for a statistical model, previously developed for Peruvian sunlit leaves, to consistently predict leaf ages from leaf reflectance spectra across two contrasting forests in Peru and Brazil and across diverse canopy environments. The model performed well for independent Brazilian sunlit and shade canopy leaves (R2  = 0.75-0.78), suggesting that canopy leaves (and their associated spectra) follow constrained developmental trajectories even in contrasting forests. The model did not perform as well for mid-canopy and understory leaves (R2  = 0.27-0.29), because leaves in different environments have distinct traits and trait developmental trajectories. When we accounted for distinct environment-trait linkages - either by explicitly including traits and environments in the model, or, even better, by re-parameterizing the spectra-only model to implicitly capture distinct trait-trajectories in different environments - we achieved a more general model that well-predicted leaf age across forests and environments (R2  = 0.79). Fundamental rules, linked to leaf environments, constrain the development of leaf traits and allow for general prediction of leaf age from spectra across species, sites and canopy environments.


Subject(s)
Forests , Light , Plant Leaves/growth & development , Plant Leaves/physiology , Quantitative Trait, Heritable , Tropical Climate , Brazil , Geography , Models, Theoretical , Peru , Regression Analysis , Trees/anatomy & histology , Trees/growth & development
5.
New Phytol ; 214(3): 1049-1063, 2017 May.
Article in English | MEDLINE | ID: mdl-26877108

ABSTRACT

Leaf aging is a fundamental driver of changes in leaf traits, thereby regulating ecosystem processes and remotely sensed canopy dynamics. We explore leaf reflectance as a tool to monitor leaf age and develop a spectra-based partial least squares regression (PLSR) model to predict age using data from a phenological study of 1099 leaves from 12 lowland Amazonian canopy trees in southern Peru. Results demonstrated monotonic decreases in leaf water (LWC) and phosphorus (Pmass ) contents and an increase in leaf mass per unit area (LMA) with age across trees; leaf nitrogen (Nmass ) and carbon (Cmass ) contents showed monotonic but tree-specific age responses. We observed large age-related variation in leaf spectra across trees. A spectra-based model was more accurate in predicting leaf age (R2  = 0.86; percent root mean square error (%RMSE) = 33) compared with trait-based models using single (R2  = 0.07-0.73; %RMSE = 7-38) and multiple (R2  = 0.76; %RMSE = 28) predictors. Spectra- and trait-based models established a physiochemical basis for the spectral age model. Vegetation indices (VIs) including the normalized difference vegetation index (NDVI), enhanced vegetation index 2 (EVI2), normalized difference water index (NDWI) and photosynthetic reflectance index (PRI) were all age-dependent. This study highlights the importance of leaf age as a mediator of leaf traits, provides evidence of age-related leaf reflectance changes that have important impacts on VIs used to monitor canopy dynamics and productivity and proposes a new approach to predicting and monitoring leaf age with important implications for remote sensing.


Subject(s)
Chemical Phenomena , Light , Plant Leaves/growth & development , Plant Leaves/physiology , Trees/physiology , Ecosystem , Least-Squares Analysis , Models, Theoretical , Peru , Plant Leaves/anatomy & histology , Plant Leaves/chemistry , Remote Sensing Technology , Satellite Communications , Species Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...