Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
J Hazard Mater ; 460: 132507, 2023 10 15.
Article in English | MEDLINE | ID: mdl-37699265

ABSTRACT

Polyethylene terephthalate (PET), a petroleum-based plastic, and polylactic acid (PLA), a biobased plastic, have a similar visual appearance thus they usually end up in municipal waste treatment facilities. The objective of this project was to develop an effective PET and PLA waste treatment process that involves pretreatment with deep eutectic solvent (DES) followed by biodegradation with a plastic-degrading bacterial consortium in a composting system. The DES used was a mixture of choline chloride and glycerol, while the bacterial strains (Chitinophaga jiangningensis EA02, Nocardioides zeae EA12, Stenotrophomonas pavanii EA33, Gordonia desulfuricans EA63, Achromobacter xylosoxidans A9 and Mycolicibacterium parafortuitum J101) used to prepare the bacterial consortium were selected based on their ability to biodegrade PET, PLA, and plasticizer. The plastic samples (a PET bottle, PLA cup, and PLA film) were pretreated with DES through a dip-coating method. The DES-coated plastic samples exhibited higher surface wettability and biofilm formation, indicating that DES increases the hydrophilicity of the plastic and facilitates bacterial attachment to the plastic surface. The combined action of DES pretreatment and bioaugmentation with a plastic-degrading bacterial consortium led to improved degradation of PET and PLA samples in various environments, including aqueous media at ambient temperature, lab-scale traditional composting, and pilot-scale composting.


Subject(s)
Achromobacter denitrificans , Actinomycetales , Deep Eutectic Solvents , Bacteria , Polyethylene Terephthalates
2.
PLoS Negl Trop Dis ; 17(7): e0011470, 2023 07.
Article in English | MEDLINE | ID: mdl-37405994

ABSTRACT

BACKGROUND: Plasmodium cynomolgi is a nonhuman primate parasite that causes malaria in humans and is transmitted by the Anopheles mosquito. Macaques, the natural hosts of P. cynomolgi, are widely distributed in Asia, especially in Southeast Asia. Anthropogenic land-use changes and wildlife habitat reduction due to local environmental changes, deforestation, urban expansion, and construction increased the frequency of human-macaque-vector interactions and facilitated the emergence of zoonotic malaria, causing an exponential increase in the infection rates in this area. Although microscopic tools are the gold standard for malaria diagnosis, they have very low sensitivity. Therefore, disease control and prevention require rapid, sensitive and accurate diagnostic tests. METHODOLOGY/PRINCIPLE FINDINGS: This study aims to develop a diagnostic method using a recombinase polymerase amplification (RPA) combined with a lateral flow (LF) strip method to specifically diagnose P. cynomolgi. Laboratory validation determined the method's sensitivity and specificity compared to the nested PCR method. The lower limit of detection was 22.14 copies/µl of recombinant plasmid per reaction. The combination method represented 81.82% sensitivity and 94.74% specificity compared to the nested PCR. CONCLUSIONS/SIGNIFICANCE: The diagnostic testing developed in this study combines a recombinase polymerase amplification (RPA) and a lateral flow (LF) strip, offering rapid high sensitivity and specificity. Further development of this technique could make it a promising method for detecting P. cynomolgi.


Subject(s)
Malaria , Recombinases , Animals , Humans , Nucleic Acid Amplification Techniques/methods , Mosquito Vectors , Malaria/diagnosis , Malaria/parasitology , Polymerase Chain Reaction , Sensitivity and Specificity , Macaca
SELECTION OF CITATIONS
SEARCH DETAIL