Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 96
Filter
1.
Maturitas ; 186: 108028, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38815535

ABSTRACT

Traditionally known for managing blood sugar, GLP-1, a gut hormone, is emerging as a potential key to both lengthening lifespan and combating age-related ailments. While widely recognized for its role in blood sugar control, GLP-1 is increasingly recognized for its diverse effects on various biological pathways beyond glucose metabolism. Research across organisms and humans suggests that activating GLP-1 receptors significantly impacts cellular processes linked to aging. Its ability to boost mitochondrial function, enhance cellular stress resistance, and quell inflammation hints at its wider influence on aging mechanisms. This intricate interplay between GLP-1 and longevity appears to act through multiple pathways. One key effect is its ability to modulate insulin sensitivity, potentially curbing age-related metabolic issues like type 2 diabetes. Its neuroprotective properties also make it a promising candidate for addressing age-related cognitive decline and neurodegenerative diseases. Furthermore, preclinical studies using GLP-1 analogs or agonists have shown promising results in extending lifespan and improving healthspan in various model organisms. These findings provide a compelling rationale for exploring GLP-1-based interventions in humans to extend healthy aging. However, despite the exciting therapeutic prospects of GLP-1 in promoting longevity, challenges remain. Determining optimal dosages, establishing long-term safety profiles, and investigating potential adverse effects require comprehensive clinical investigations before we can confidently translate these findings to humans. This article emphasises the wide applicability of GLP-1.

2.
Phytother Res ; 2024 Apr 11.
Article in English | MEDLINE | ID: mdl-38602108

ABSTRACT

Phytoestrogens, also known as xenoestrogens, are secondary metabolites derived from plants that have similar structures and biological effects as human estrogens. These compounds do not directly affect biological functions but can act as agonists or antagonists depending on the level of endogenous estrogen in the body. Phytoestrogens may have an epigenetic mechanism of action independent of estrogen receptors. These compounds are found in more than 300 plant species and are synthesized through the phenylpropanoid pathway, with specific enzymes leading to various chemical structures. Phytoestrogens, primarily phenolic compounds, include isoflavonoids, flavonoids, stilbenes, and lignans. Extensive research in animals and humans has demonstrated the protective effects of phytoestrogens on estrogen-dependent diseases. Clinical trials have also shown their potential benefits in conditions such as osteoporosis, Parkinson's disease, and certain types of cancer. This review provides a concise overview of phytoestrogen classification, chemical diversity, and biosynthesis and discusses the potential therapeutic effects of phytoestrogens, as well as their preclinical and clinical development.

3.
J Ethnopharmacol ; 330: 118180, 2024 Aug 10.
Article in English | MEDLINE | ID: mdl-38614262

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Aromatherapy, a holistic healing practice utilizing the aromatic essences of plant-derived essential oils, has gained significant attention for its therapeutic potential in promoting overall well-being. Use of phytoconstituent based essential oil has played a significant role in the evolving therapeutic avenue of aromatherapy as a complementary system of medicine. AIM OF THE STUDY: This comprehensive review article aims to explore the usage of essential oils for aromatherapy, shedding light on their diverse applications, scientific evidence, and safety considerations. Furthermore, the growing interest in using essential oils as complementary therapies in conjunction with conventional medicine is explored, underscoring the significance of collaborative healthcare approaches. MATERIALS AND METHODS: Literature search was performed from databases like PubMed, ScienceDirect, Scopus, and Bentham using keywords like Aromatherapy, Aromatic Plants, Essential oils, Phytotherapy, and complementary medicine. The keywords were used to identify literature with therapeutic and mechanistic details of herbal agents with desired action. RESULTS: The integration of traditional knowledge with modern scientific research has led to a renewed interest in essential oils as valuable tools in contemporary healthcare. Various extraction methods used to obtain essential oils are presented, emphasizing their impact on the oil's chemical composition and therapeutic properties. Additionally, the article scrutinizes the factors influencing the quality and purity of essential oils, elucidating the significance of standardization and certification for safe usage. A comprehensive assessment of the therapeutic effects of essential oils is provided, encompassing their potential as antimicrobial, analgesic, anxiolytic, and anti-inflammatory agents, among others. Clinical trials and preclinical studies are discussed to consolidate the existing evidence on their efficacy in treating diverse health conditions, both physical and psychological. Safety considerations are of paramount importance when employing essential oils, and this review addresses potential adverse effects, contraindications, and best practices to ensure responsible usage. CONCLUSIONS: This comprehensive review provides valuable insights into the exploration of essential oils for aromatherapy, emphasizing their potential as natural and potent remedies for a wide range of ailments. By amalgamating traditional wisdom and modern research, this article aims to encourage further investigation into the therapeutic benefits of essential oils while advocating for their responsible and evidence-based incorporation into healthcare practices.


Subject(s)
Aromatherapy , Oils, Volatile , Oils, Volatile/therapeutic use , Aromatherapy/methods , Humans , Animals
4.
Expert Rev Anti Infect Ther ; 22(5): 279-287, 2024 May.
Article in English | MEDLINE | ID: mdl-38642067

ABSTRACT

INTRODUCTION: The emergence of SARS-CoV-2 triggered a global health emergency, causing > 7 million deaths thus far. Limited early knowledge spurred swift research, treatment, and vaccine developments. Implementation of public health measures such as, lockdowns and social distancing, disrupted economies and strained healthcare. Viral mutations highlighted the need for flexible strategies and strong public health infrastructure, with global collaboration crucial for pandemic control. AREAS COVERED: (i) Revisiting diagnostic strategies, (ii) adapting to the evolving challenge of the virus, (iii) vaccines against new variants, (iv) vaccine hesitancy in the light of the evolving disease, (v) treatment strategies, (vi) hospital preparedness for changing clinical needs, (vii) global cooperation and data sharing, (viii) economic implications, and (ix) education and awareness- keeping communities informed. EXPERT OPINION: The COVID-19 crisis forced unprecedented adaptation, emphasizing public health readiness, global unity, and scientific advancement. Key lessons highlight the importance of adaptability and resilience against uncertainties. As the pandemic evolves into a 'new normal,' ongoing vigilance, improved understanding, and available vaccines and treatments equip us for future challenges. Priorities now include proactive pandemic strategies, early warnings, supported healthcare, public education, and addressing societal disparities for better health resilience and sustainability.


Subject(s)
COVID-19 Vaccines , COVID-19 , Global Health , Public Health , SARS-CoV-2 , Humans , COVID-19/epidemiology , COVID-19/prevention & control , COVID-19 Vaccines/administration & dosage , Vaccine Development , Pandemics/prevention & control
5.
Int J Biol Macromol ; 266(Pt 2): 131219, 2024 May.
Article in English | MEDLINE | ID: mdl-38556227

ABSTRACT

BACKGROUND: Propolis is a resinous compound that is obtained from honey bees. It consists of numerous chemical constituents that impart different therapeutic action. The heart is the core of the body and cardiovascular disease (CVD) is a burden for the human being. This article emphasizes how propolis is fruitful in the management of various CVDs. SCOPE AND APPROACH: This review focuses on how various constituents of the propolis (such as terpenes, flavonoids, phenolics, etc.) impart cardio protective actions. KEY FINDING AND CONCLUSION: With the support of various clinical trials and research outcomes, it was concluded that propolis owns niche cardio protective properties that can be a boon for various cardiac problems (both in preventive and therapeutic action) such as atherosclerosis, excessive angiogenesis, hypertension, and many more.


Subject(s)
Cardiovascular Diseases , Propolis , Animals , Humans , Cardiovascular Diseases/drug therapy , Flavonoids/therapeutic use , Flavonoids/chemistry , Flavonoids/pharmacology , Propolis/chemistry , Propolis/therapeutic use
6.
Eur J Pharmacol ; 969: 176451, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38408598

ABSTRACT

Pancreatic cancer, particularly pancreatic ductal adenocarcinoma, remains a devastating disease with a dismal prognosis and limited survival rates. Despite various drug treatments and regimens showing promise in managing the disease, the clinical outcomes have not significantly improved. Immunotherapy however, has become a forefront area in pancreatic cancer treatment. This approach comprises a range of agents, including small molecule drugs, antibodies, combination therapies, and vaccines. In the last 5-8 years, there has been an upsurge of research into the use of monoclonal antibodies to block receptors on cancer or immune cells, revolutionising cancer treatment and management. Several targets have been identified and studied, with the most encouraging noted in relation to checkpoint markers, namely, antibodies targeting anti-programmed cell death 1 (PD-1) and its receptor PD-L1. Herein, we present the clinical developments in immunotherapy in the last 5 years especially those which have been tested in humans against pancreatic cancer.


Subject(s)
Carcinoma, Pancreatic Ductal , Pancreatic Neoplasms , Humans , Antibodies, Monoclonal/therapeutic use , Pancreatic Neoplasms/drug therapy , Pancreatic Neoplasms/metabolism , Carcinoma, Pancreatic Ductal/drug therapy , Combined Modality Therapy , Immunotherapy
7.
Expert Rev Vaccines ; 23(1): 246-265, 2024.
Article in English | MEDLINE | ID: mdl-38372023

ABSTRACT

INTRODUCTION: The escalating prevalence of infectious diseases is an important cause of concern in society. Particularly in several developing countries, infectious diarrhea poses a major problem, with a high fatality rate, especially among young children. The condition is divided into four classes, namely, acute diarrhea, invasive diarrhea, acute bloody diarrhea, and chronic diarrhea. Various pathogenic agents, such as bacteria, viruses, protozoans, and helminths, contribute to the onset of this condition. AREAS COVERED: The review discusses the scenario of infectious diarrhea, the prevalent types, as well as approaches to management including preventive, therapeutic, and vaccination strategies. The vaccination techniques are extensively discussed including the available vaccines, their advantages as well as limitations. EXPERT OPINION: There are several approaches available to develop new-improved vaccines. In addition, route of immunization is important and aerosols/nasal sprays, oral route, skin patches, powders, and liquid jets to minimize needles can be used. Plant-based vaccines, such as rice, might save packing and refrigeration costs by being long-lasting, non-refrigerable, and immunogenic. Future research should utilize predetermined PCR testing intervals and symptom monitoring to identify persistent pathogens after therapy and symptom remission.


Subject(s)
Diarrhea , Vaccines , Child , Humans , Child, Preschool , Diarrhea/prevention & control , Diarrhea/epidemiology , Vaccination , Immunization , Costs and Cost Analysis
8.
J Control Release ; 366: 761-782, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38219913

ABSTRACT

The emergence of COVID-19 has posed an unprecedented global health crisis, challenging the healthcare systems worldwide. Amidst the rapid development of several vaccine formulations, protein subunit vaccines have emerged as a promising approach. This article provides an in-depth evaluation of the role of protein subunit vaccines in the management of COVID-19. Leveraging viral protein fragments, particularly the spike protein from SARS-CoV-2, these vaccines elicit a targeted immune response without the risk of inducing disease. Notably, the robust safety profile of protein subunit vaccines makes them a compelling candidate in the management of COVID-19. Various innovative approaches, including reverse vaccinology, virus like particles, and recombinant modifications are incorporated to develop protein subunit vaccines. In addition, the utilization of advanced manufacturing techniques facilitates large-scale production, ensuring widespread distribution. Despite these advancements, challenges persist, such as the requirement for cold-chain storage and the necessity for booster doses. This article evaluates the formulation and applications of protein subunit vaccines, providing a comprehensive overview of their clinical development and approvals in the context of COVID-19. By addressing the current status and challenges, this review aims to contribute to the ongoing discourse on optimizing protein subunit vaccines for effective pandemic control.


Subject(s)
COVID-19 , Humans , COVID-19/prevention & control , SARS-CoV-2 , Protein Subunit Vaccines , Cryopreservation , Pandemics
9.
Nanomedicine (Lond) ; 2024 Jan 31.
Article in English | MEDLINE | ID: mdl-38293801

ABSTRACT

Nanoemulsions consist of a combination of several components such as oil, water, emulsifiers, surfactants and cosurfactants. Various techniques for producing nanoemulsions include high-energy and low-energy approaches such as high-pressure homogenization, microfluidization, jet disperser and phase inversion methods. The properties of a formulation can be influenced by elements such as the composition, concentration, size and charge of droplets, which in turn can affect the technique of manufacture. Characterization is conducted by the assessment of several factors such as physical properties, pH analysis, viscosity measurement and refractive index determination. This article offers a thorough examination of the latest developments in nanoemulsion technology, with a focus on their wide-ranging applications and promising future possibilities. It also discusses the administration of nanoemulsions through several methods.

10.
Colloids Surf B Biointerfaces ; 235: 113761, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38281392

ABSTRACT

Diabetes is a widespread epidemic that includes a number of comorbid conditions that greatly increase the chance of acquiring other chronic illnesses. Every year, there are significantly more people with diabetes because of the rise in type-2 diabetes prevalence. The primary causes of illness and mortality worldwide are, among these, hyperglycemia and its comorbidities. There has been a lot of interest in the creation of peptide-based hydrogels as a potentially effective platform for the treatment of diabetes and its consequences. Here, we emphasize the use of self-assembled hydrogel formulations and their unique potential for the treatment/management of type-2 diabetes and its consequences. (i.e., wounds). Key aspects covered include the characteristics of self-assembled peptide hydrogels, methods for their preparation, and their pre-clinical and clinical applications in addressing metabolic disorders such as type-2 diabetes.


Subject(s)
Diabetes Mellitus, Type 2 , Diabetes Mellitus , Humans , Wound Healing , Hydrogels/therapeutic use , Peptides/therapeutic use , Diabetes Mellitus, Type 2/drug therapy , Diabetes Mellitus/drug therapy
12.
Int J Pharm ; 647: 123546, 2023 Nov 25.
Article in English | MEDLINE | ID: mdl-37884213

ABSTRACT

Liquid crystal (LC)-based nanoformulations may efficiently deliver drugs and therapeutics to targeted biological sites. Lyotropic liquid crystalline phases (LLCPs) have received much interest in recent years due to their unique structural characteristics of both isotropic liquids and crystalline solids. These LLCPs can be utilized as promising drug delivery systems to deliver drugs, proteins, peptides and vaccines because of their improved drug loading, stabilization, and controlled drug release. The effects of molecule shape, microsegregation, and chirality are very important in the formation of liquid crystalline phases (LCPs). Homogenization of self-assembled amphiphilic lipids, water and stabilizers produces LLCPs with different types of mesophases, bicontinuous cubic (cubosomes) and inverse hexagonal (hexosomes). Moreover, many studies have also shown higher bioadhesivity and biocompatibility of LCs due to their structural resemblance to biological membranes, thus making them more efficient for targeted drug delivery. In this review, an outline of the engineering aspects of LLCPs and polymer-based LLCPs is summarized. Moreover, it covers parenteral, oral, transdermal delivery and medical imaging of LC in targeting various tissues and is discussed with a scope to design more efficient next-generation novel nanosystems. In addition, a detailed overview of advanced liquid crystal-based drug delivery for vaccines and biomedical applications is reviewed.


Subject(s)
Liquid Crystals , Vaccines , Liquid Crystals/chemistry , Lipids/chemistry , Drug Delivery Systems/methods , Pharmaceutical Preparations
13.
ACS Omega ; 8(41): 37654-37684, 2023 Oct 17.
Article in English | MEDLINE | ID: mdl-37867666

ABSTRACT

Cancer diagnoses have been increasing worldwide, and solid tumors are among the leading contributors to patient mortality, creating an enormous burden on the global healthcare system. Cancer is responsible for around 10.3 million deaths worldwide. Solid tumors are one of the most prevalent cancers observed in recent times. On the other hand, early diagnosis is a significant challenge that could save a person's life. Treatment with existing methods has pitfalls that limit the successful elimination of the disorder. Though nanoparticle-based imaging and therapeutics have shown a significant impact in healthcare, current methodologies for solid tumor treatment are insufficient. There are multiple complications associated with the diagnosis and management of solid tumors as well. Recently, surface-conjugated nanoparticles such as lipid nanoparticles, metallic nanoparticles, and quantum dots have shown positive results in solid tumor diagnostics and therapeutics in preclinical models. Other nanotheranostic material platforms such as plasmonic theranostics, magnetotheranostics, hybrid nanotheranostics, and graphene theranostics have also been explored. These nanoparticle theranostics ensure the appropriate targeting of tumors along with selective delivery of cargos (both imaging and therapeutic probes) without affecting the surrounding healthy tissues. Though they have multiple applications, nanoparticles still possess numerous limitations that need to be addressed in order to be fully utilized in the clinic. In this review, we outline the importance of materials and design strategies used to engineer nanoparticles in the treatment and diagnosis of solid tumors and how effectively each method overcomes the drawbacks of the current techniques. We also highlight the gaps in each material platform and how design considerations can address their limitations in future research directions.

16.
Pharmaceutics ; 15(7)2023 Jul 10.
Article in English | MEDLINE | ID: mdl-37514102

ABSTRACT

Artificial intelligence (AI) has emerged as a powerful tool that harnesses anthropomorphic knowledge and provides expedited solutions to complex challenges. Remarkable advancements in AI technology and machine learning present a transformative opportunity in the drug discovery, formulation, and testing of pharmaceutical dosage forms. By utilizing AI algorithms that analyze extensive biological data, including genomics and proteomics, researchers can identify disease-associated targets and predict their interactions with potential drug candidates. This enables a more efficient and targeted approach to drug discovery, thereby increasing the likelihood of successful drug approvals. Furthermore, AI can contribute to reducing development costs by optimizing research and development processes. Machine learning algorithms assist in experimental design and can predict the pharmacokinetics and toxicity of drug candidates. This capability enables the prioritization and optimization of lead compounds, reducing the need for extensive and costly animal testing. Personalized medicine approaches can be facilitated through AI algorithms that analyze real-world patient data, leading to more effective treatment outcomes and improved patient adherence. This comprehensive review explores the wide-ranging applications of AI in drug discovery, drug delivery dosage form designs, process optimization, testing, and pharmacokinetics/pharmacodynamics (PK/PD) studies. This review provides an overview of various AI-based approaches utilized in pharmaceutical technology, highlighting their benefits and drawbacks. Nevertheless, the continued investment in and exploration of AI in the pharmaceutical industry offer exciting prospects for enhancing drug development processes and patient care.

17.
J Med Case Rep ; 17(1): 313, 2023 Jul 21.
Article in English | MEDLINE | ID: mdl-37475012

ABSTRACT

BACKGROUND: Dyskinesia is a movement disorder categorized by involuntary movement of muscle. Although dyskinesia can be brought on by taking medications, it can also be a symptom of a variety of diseases. Antiepileptic drug-induced involuntary movements have been well researched. Rare reports have been made for dyskinesia, a type of dystonia caused by phenytoin. The mechanism of its occurrence must be succinctly studied. CASE PRESENTATION: A 53-year-old Asian patient taking phenytoin (100 mg twice daily) experienced symptoms of perioral muscle involuntary movement, impaired speech, and generalized tremors and was admitted to the hospital. Brain magnetic resonance imaging showed significant development of encephalomalacia and porencephaly. The serum phenytoin levels were in the toxic range (33 g/ml). These were suggestive of phenytoin-induced dyskinesia. Levetiracetam and clonazepam were initiated, and the patient showed significant improvement in the symptoms. CONCLUSION: This case presented a substantial reference value for the differential diagnosis and treatment prognosis of phenytoin-induced dyskinesia. The phenytoin-induced dyskinesia in this patient was successfully reversed with prompt identification and treatment. According to the case study's findings, such people may benefit from periodic therapeutic drug monitoring.


Subject(s)
Dyskinesia, Drug-Induced , Dystonia , Humans , Middle Aged , Phenytoin/adverse effects , Dyskinesia, Drug-Induced/etiology , Dyskinesia, Drug-Induced/drug therapy , Anticonvulsants/adverse effects , Levetiracetam/therapeutic use
18.
Mol Pharm ; 20(8): 3804-3828, 2023 08 07.
Article in English | MEDLINE | ID: mdl-37478169

ABSTRACT

Rosacea is a multifactorial chronic inflammatory dermatosis characterized by flushing, nontransient erythema, papules and pustules, telangiectasia, and phymatous alterations accompanied by itching, burning, or stinging, the pathophysiology of which is not yet fully understood. Conventional topical treatments usually show limited efficacy due to the physical barrier property of the skin that hinders skin penetration of the active ingredients, thereby hampering proper drug skin delivery and the respective therapeutic or cosmetic effects. New advances regarding the physiopathological understanding of the disease and the underlying mechanisms suggest the potential of new active ingredients as promising therapeutic and cosmetic approaches to this dermatosis. Additionally, the development of new drug delivery systems for skin delivery, particularly the potential of nanoparticles for the topical treatment and care of rosacea, has been described. Emphasis has been placed on their reduced nanometric size, which contributes to a significant improvement in the attainment of targeted skin drug delivery. In addition to the exposition of the known pathophysiology, epidemiology, diagnosis, and preventive measures, this Review covers the topical approaches used in the control of rosacea, including skin care, cosmetics, and topical therapies, as well as the future perspectives on these strategies.


Subject(s)
Dermatologic Agents , Rosacea , Humans , Rosacea/drug therapy , Rosacea/diagnosis , Rosacea/pathology , Administration, Topical , Chronic Disease , Dermatologic Agents/therapeutic use
19.
Nanotheranostics ; 7(4): 368-379, 2023.
Article in English | MEDLINE | ID: mdl-37151802

ABSTRACT

Cancer diagnosis and management have been a slow-evolving area in medical science. Conventional therapies have by far proved to have various limitations. Also, the concept of immunotherapy which was thought to revolutionize the management of cancer has presented its range of drawbacks. To overcome these limitations nanoparticulate-derived diagnostic and therapeutic strategies are emerging. These nanomaterials are to be explored as they serve as a prospect for cancer theranostics. Nanoparticles have a significant yet unclear role in screening as well as therapy of cancer. However, nanogels and Photodynamic therapy is one such approach to be developed in cancer theranostics. Photoactive cancer theranostics is a vivid area that might prove to help manage cancer. Also, the utilization of the quantum dots as a diagnostic tool and to selectively kill cancer cells, especially in CNS tumors. Additionally, the redox-sensitive micelles targeting the tumor microenvironment of the cancer are also an important theranostic tool. This review focuses on exploring various agents that are currently being studied or can further be studied as cancer theranostics.


Subject(s)
Nanoparticles , Nanostructures , Neoplasms , Photochemotherapy , Humans , Theranostic Nanomedicine/methods , Neoplasms/drug therapy , Nanoparticles/therapeutic use , Photochemotherapy/methods , Nanostructures/therapeutic use , Tumor Microenvironment
20.
Front Immunol ; 14: 1064459, 2023.
Article in English | MEDLINE | ID: mdl-37153613

ABSTRACT

The newly emerged coronavirus (SARS-CoV-2) is virulent, contagious, and has rapidly gained many mutations, which makes it highly infectious and swiftly transmissible around the world. SARS-CoV-2 infects people of all ages and targets all body organs and their cellular compartments, starting from the respiratory system, where it shows many deleterious effects, to other tissues and organs. Systemic infection can lead to severe cases that require intensive intervention. Multiple approaches were elaborated, approved, and successfully used in the intervention of the SARS-CoV-2 infection. These approaches range from the utilization of single and/or mixed medications to specialized supportive devices. For critically ill COVID-19 patients with acute respiratory distress syndrome, both extracorporeal membrane oxygenation (ECMO) and hemadsorption are utilized in combination or individually to support and release the etiological factors responsible for the "cytokine storm" underlying this condition. The current report discusses hemadsorption devices that can be used as part of supportive treatment for the COVID-19-associated cytokine storm.


Subject(s)
COVID-19 , Extracorporeal Membrane Oxygenation , Humans , COVID-19/therapy , SARS-CoV-2 , Cytokines
SELECTION OF CITATIONS
SEARCH DETAIL
...