Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
1.
Front Public Health ; 9: 649190, 2021.
Article in English | MEDLINE | ID: mdl-34178915

ABSTRACT

After spreading in the Americas, West Nile virus was detected in Guadeloupe (French West Indies) for the first time in 2002. Ever since, several organizations have conducted research, serological surveys, and surveillance activities to detect the virus in horses, birds, mosquitoes, and humans. Organizations often carried them out independently, leading to knowledge gaps within the current virus' situation. Nearly 20 years after the first evidence of West Nile virus in the archipelago, it has not yet been isolated, its impact on human and animal populations is unknown, and its local epidemiological cycle is still poorly understood. Within the framework of a pilot project started in Guadeloupe in 2019, West Nile virus was chosen as a federative model to apply the "One Health" approach for zoonotic epidemiological surveillance and shift from a sectorial to an integrated surveillance system. Human, animal, and environmental health actors involved in both research and surveillance were considered. Semi-directed interviews and a Social Network Analysis were carried out to learn about the surveillance network structure and actors, analyze information flows, and identify communication challenges. An information system was developed to fill major gaps: users' needs and main functionalities were defined through a participatory process where actors also tested and validated the tool. Additionally, all actors shared their data, which were digitized, cataloged, and centralized, to be analyzed later. An R Shiny server was integrated into the information system, allowing an accessible and dynamic display of data showcasing all of the partners' information. Finally, a series of virtual workshops were organized among actors to discuss preliminary results and plan the next steps to improve West Nile Virus and vector-borne or emerging zoonosis surveillance. The actors are willing to build a more resilient and cooperative network in Guadeloupe with improved relevance, efficiency, and effectiveness of their work.


Subject(s)
West Nile Fever , West Nile virus , Animals , Caribbean Region/epidemiology , Guadeloupe/epidemiology , Horses , Mosquito Vectors , Pilot Projects , West Indies , West Nile Fever/epidemiology
2.
Parasit Vectors ; 13(1): 194, 2020 Apr 15.
Article in English | MEDLINE | ID: mdl-32295627

ABSTRACT

BACKGROUND: Culicoides biting midges transmit viruses resulting in disease in ruminants and equids such as bluetongue, Schmallenberg disease and African horse sickness. In the past decades, these diseases have led to important economic losses for farmers in Europe. Vector abundance is a key factor in determining the risk of vector-borne disease spread and it is, therefore, important to predict the abundance of Culicoides species involved in the transmission of these pathogens. The objectives of this study were to model and map the monthly abundances of Culicoides in Europe. METHODS: We obtained entomological data from 904 farms in nine European countries (Spain, France, Germany, Switzerland, Austria, Poland, Denmark, Sweden and Norway) from 2007 to 2013. Using environmental and climatic predictors from satellite imagery and the machine learning technique Random Forests, we predicted the monthly average abundance at a 1 km2 resolution. We used independent test sets for validation and to assess model performance. RESULTS: The predictive power of the resulting models varied according to month and the Culicoides species/ensembles predicted. Model performance was lower for winter months. Performance was higher for the Obsoletus ensemble, followed by the Pulicaris ensemble, while the model for Culicoides imicola showed a poor performance. Distribution and abundance patterns corresponded well with the known distributions in Europe. The Random Forests model approach was able to distinguish differences in abundance between countries but was not able to predict vector abundance at individual farm level. CONCLUSIONS: The models and maps presented here represent an initial attempt to capture large scale geographical and temporal variations in Culicoides abundance. The models are a first step towards producing abundance inputs for R0 modelling of Culicoides-borne infections at a continental scale.


Subject(s)
Ceratopogonidae , Machine Learning , Population Dynamics , Animals , Ceratopogonidae/virology , Climate , Ecosystem , Europe , Farms , Insect Vectors/virology , Models, Theoretical , Seasons
3.
Parasit Vectors ; 11(1): 608, 2018 Nov 29.
Article in English | MEDLINE | ID: mdl-30497537

ABSTRACT

BACKGROUND: Biting midges of the genus Culicoides (Diptera: Ceratopogonidae) are small hematophagous insects responsible for the transmission of bluetongue virus, Schmallenberg virus and African horse sickness virus to wild and domestic ruminants and equids. Outbreaks of these viruses have caused economic damage within the European Union. The spatio-temporal distribution of biting midges is a key factor in identifying areas with the potential for disease spread. The aim of this study was to identify and map areas of neglectable adult activity for each month in an average year. Average monthly risk maps can be used as a tool when allocating resources for surveillance and control programs within Europe. METHODS: We modelled the occurrence of C. imicola and the Obsoletus and Pulicaris ensembles using existing entomological surveillance data from Spain, France, Germany, Switzerland, Austria, Denmark, Sweden, Norway and Poland. The monthly probability of each vector species and ensembles being present in Europe based on climatic and environmental input variables was estimated with the machine learning technique Random Forest. Subsequently, the monthly probability was classified into three classes: Absence, Presence and Uncertain status. These three classes are useful for mapping areas of no risk, areas of high-risk targeted for animal movement restrictions, and areas with an uncertain status that need active entomological surveillance to determine whether or not vectors are present. RESULTS: The distribution of Culicoides species ensembles were in agreement with their previously reported distribution in Europe. The Random Forest models were very accurate in predicting the probability of presence for C. imicola (mean AUC = 0.95), less accurate for the Obsoletus ensemble (mean AUC = 0.84), while the lowest accuracy was found for the Pulicaris ensemble (mean AUC = 0.71). The most important environmental variables in the models were related to temperature and precipitation for all three groups. CONCLUSIONS: The duration periods with low or null adult activity can be derived from the associated monthly distribution maps, and it was also possible to identify and map areas with uncertain predictions. In the absence of ongoing vector surveillance, these maps can be used by veterinary authorities to classify areas as likely vector-free or as likely risk areas from southern Spain to northern Sweden with acceptable precision. The maps can also focus costly entomological surveillance to seasons and areas where the predictions and vector-free status remain uncertain.


Subject(s)
Ceratopogonidae/physiology , Animal Distribution , Animals , Ceratopogonidae/classification , Ceratopogonidae/genetics , Ecosystem , Environment , Europe , Female , Male , Population Dynamics , Seasons , Time Factors
4.
Parasit Vectors ; 11(1): 112, 2018 02 27.
Article in English | MEDLINE | ID: mdl-29482593

ABSTRACT

BACKGROUND: Biting midges of the genus Culicoides (Diptera: Ceratopogonidae) are vectors of bluetongue virus (BTV), African horse sickness virus and Schmallenberg virus (SBV). Outbreaks of both BTV and SBV have affected large parts of Europe. The spread of these diseases depends largely on vector distribution and abundance. The aim of this analysis was to identify and quantify major spatial patterns and temporal trends in the distribution and seasonal variation of observed Culicoides abundance in nine countries in Europe. METHODS: We gathered existing Culicoides data from Spain, France, Germany, Switzerland, Austria, Denmark, Sweden, Norway and Poland. In total, 31,429 Culicoides trap collections were available from 904 ruminant farms across these countries between 2007 and 2013. RESULTS: The Obsoletus ensemble was distributed widely in Europe and accounted for 83% of all 8,842,998 Culicoides specimens in the dataset, with the highest mean monthly abundance recorded in France, Germany and southern Norway. The Pulicaris ensemble accounted for only 12% of the specimens and had a relatively southerly and easterly spatial distribution compared to the Obsoletus ensemble. Culicoides imicola Kieffer was only found in Spain and the southernmost part of France. There was a clear spatial trend in the accumulated annual abundance from southern to northern Europe, with the Obsoletus ensemble steadily increasing from 4000 per year in southern Europe to 500,000 in Scandinavia. The Pulicaris ensemble showed a very different pattern, with an increase in the accumulated annual abundance from 1600 in Spain, peaking at 41,000 in northern Germany and then decreasing again toward northern latitudes. For the two species ensembles and C. imicola, the season began between January and April, with later start dates and increasingly shorter vector seasons at more northerly latitudes. CONCLUSION: We present the first maps of seasonal Culicoides abundance in large parts of Europe covering a gradient from southern Spain to northern Scandinavia. The identified temporal trends and spatial patterns are useful for planning the allocation of resources for international prevention and surveillance programmes in the European Union.


Subject(s)
Ceratopogonidae , Insect Vectors , African Horse Sickness/transmission , Animals , Bluetongue/transmission , Ceratopogonidae/classification , Europe , Farms , Geography , Insect Vectors/classification , Population Density , Population Dynamics , Ruminants , Seasons , Species Specificity
5.
Front Vet Sci ; 4: 198, 2017.
Article in English | MEDLINE | ID: mdl-29250528

ABSTRACT

Wild boars and domestic pigs belong to the same species (Sus scrofa). When sympatric populations of wild boars, feral pigs, and domestic pigs share the same environment, interactions between domestic and wild suids (IDWS) are suspected to facilitate the spread and maintenance of several pig pathogens which can impact on public health and pig production. However, information on the nature and factors facilitating those IDWS are rarely described in the literature. In order to understand the occurrence, nature, and the factors facilitating IDWS, a total of 85 semi-structured interviews were implemented face to face among 25 strict farmers, 20 strict hunters, and 40 hunting farmers in the main traditional pig-farming regions of Corsica, where IDWS are suspected to be common and widespread. Different forms of IDWS were described: those linked with sexual attraction of wild boars by domestic sows (including sexual interactions and fights between wild and domestic boars) were most frequently reported (by 61 and 44% of the respondents, respectively) in the autumn months and early winter. Foraging around common food or water was equally frequent (reported by 60% of the respondents) but spread all along the year except in winter. Spatially, IDWS were more frequent in higher altitude pastures were pig herds remain unattended during summer and autumn months with limited human presence. Abandonment of carcasses and carcass offal in the forest were equally frequent and efficient form of IDWS reported by 70% of the respondents. Certain traditional practices already implemented by hunters and farmers had the potential to mitigate IDWS in the local context. This study provided quantitative evidence of the nature of different IDWS in the context of extensive commercial outdoor pig farming in Corsica and identified their spatial and temporal trends. The identification of those trends is useful to target suitable times and locations to develop further ecological investigations of IDWS at a finer scale in order to better understand diseases transmission patterns between populations and promote adapted management strategies.

6.
Front Vet Sci ; 3: 31, 2016.
Article in English | MEDLINE | ID: mdl-27148545

ABSTRACT

Bushpigs (BPs) (Potamochoerus larvatus) and warthogs (WHs) (Phacochoerus africanus), which are widely distributed in Eastern Africa, are likely to cohabitate in the same environment with domestic pigs (DPs), facilitating the transmission of shared pathogens. However, potential interactions between BP, WH, and DP, and the resulting potential circulation of infectious diseases have rarely been investigated in Africa to date. In order to understand the dynamics of such interactions and the potential influence of human behavior and husbandry practices on them, individual interviews (n = 233) and participatory rural appraisals (n = 11) were carried out among Ugandan pig farmers at the edge of Murchison Falls National Park, northern Uganda. In addition, as an example of possible implications of wild and DP interactions, non-linear multivariate analysis (multiple correspondence analyses) was used to investigate the potential association between the aforementioned factors (interactions and human behavior and practices) and farmer reported African swine fever (ASF) outbreaks. No direct interactions between wild pigs (WPs) and DP were reported in our study area. However, indirect interactions were described by 83 (35.6%) of the participants and were identified to be more common at water sources during the dry season. Equally, eight (3.4%) farmers declared exposing their DP to raw hunting leftovers of WPs. The exploratory analysis performed suggested possible associations between the farmer reported ASF outbreaks and indirect interactions, free-range housing systems, dry season, and having a WH burrow less than 3 km from the household. Our study was useful to gather local knowledge and to identify knowledge gaps about potential interactions between wild and DP in this area. This information could be useful to facilitate the design of future observational studies to better understand the potential transmission of pathogens between wild and DPs.

7.
Parasit Vectors ; 5: 137, 2012 Jul 09.
Article in English | MEDLINE | ID: mdl-22776566

ABSTRACT

BACKGROUND AND METHODS: The appearance of bluetongue virus (BTV) in 2006 within northern Europe exposed a lack of expertise and resources available across this region to enable the accurate morphological identification of species of Culicoides Latreille biting midges, some of which are the major vectors of this pathogen. This work aims to organise extant Culicoides taxonomic knowledge into a database and to produce an interactive identification key for females of Culicoides in the Western Palaearctic (IIKC: Interactive identification key for Culicoides). We then validated IIKC using a trial carried out by six entomologists based in this region with variable degrees of experience in identifying Culicoides. RESULTS: The current version of the key includes 98 Culicoides species with 10 morphological variants, 61 descriptors and 837 pictures and schemes. Validation was carried out by six entomologists as a blind trial with two users allocated to three classes of expertise (beginner, intermediate and advanced). Slides were identified using a median of seven steps and seven minutes and user confidence in the identification varied from 60% for failed identifications to a maximum of 80% for successful ones. By user class, the beginner group successfully identified 44.6% of slides, the intermediate 56.8% and the advanced 74.3%. CONCLUSIONS: Structured as a multi-entry key, IIKC is a powerful database for the morphological identification of female Culicoides from the Western Palaearctic region. First developed for use as an interactive identification key, it was revealed to be a powerful back-up tool for training new taxonomists and to maintain expertise level. The development of tools for arthropod involvement in pathogen transmission will allow clearer insights into the ecology and dynamics of Culicoides and in turn assist in understanding arbovirus epidemiology.


Subject(s)
Ceratopogonidae/anatomy & histology , Ceratopogonidae/classification , Databases, Factual , Animals , Europe , Female , Reproducibility of Results
8.
BMC Vet Res ; 4: 34, 2008 Sep 12.
Article in English | MEDLINE | ID: mdl-18786275

ABSTRACT

BACKGROUND: Peste des petits ruminants (PPR) is a contagious viral disease of small ruminants in Africa and Asia. In 1999, probably the largest survey on PPR ever conducted in Africa was initiated in Ethiopia where 13 651 serum samples from 7 out of the 11 regions were collected and analyzed by competitive enzyme-linked immunosorbent assay (cELISA). The objective of this paper is to present the results of this survey and discuss their practical implications for PPR-endemic regions. METHODS: We explored the spatial distribution of PPR in Ethiopia and we investigated risk factors for positive serological status. Intracluster correlation coefficients (rho), were calculated for 43 wereda (administrative units). RESULTS: Seroprevalence was very heterogeneous across regions and even more across wereda, with prevalence estimates ranging from 0% to 52.5%. Two groups of weredas could be distinguished on the basis of the estimated rho: a group with very low rho (rho < 0.12) and a group with very high rho (rho > 0.37). CONCLUSION: The results indicate that PPRV circulation has been very heterogeneous, the values for the rho may reflect the endemic or epidemic presence of the virus or the various degrees of mixing of animals in the different areas and production systems. Age appears as a risk factor for seropositive status, the linear effect seeming to confirm in the field that PPRV is highly immunogenic. Our estimates of intracluster correlation may prove useful in the design of serosurveys in other countries where PPR is of importance.


Subject(s)
Antibodies, Viral/blood , Goat Diseases/epidemiology , Peste-des-Petits-Ruminants/epidemiology , Peste-des-petits-ruminants virus/immunology , Sheep Diseases/epidemiology , Animals , Ethiopia/epidemiology , Geography , Goats , Prevalence , Risk Factors , Seroepidemiologic Studies , Sheep
9.
Ann N Y Acad Sci ; 1149: 12-5, 2008 Dec.
Article in English | MEDLINE | ID: mdl-19120164

ABSTRACT

The Caribbean Animal Health Network (CaribVET) is a collaboration of veterinary services, diagnostic laboratories, research institutes, universities, and regional/international organizations to improve animal health in the Caribbean. New tools were used by the network to develop regional animal health activities: (1) A steering committee, a coordination unit, and working groups on specific diseases or activities were established. The working group on avian influenza used a collaborative Web site to develop a regionally harmonized avian influenza surveillance protocol and performance indicators. (2) A specific network was implemented on West Nile virus (WNV) to describe the WNV status of the Caribbean countries, to perform a technology transfer of WNV diagnostics, and to establish a surveillance system. (3) The CaribVET Web site (http://www.caribvet.net) encompasses information on surveillance systems, diagnostic laboratories, conferences, bibliography, and diseases of major concern in the region. It is a participatory Web site allowing registered users to add or edit information, pages, or data. An online notification system of sanitary information was set up for Guadeloupe to improve knowledge on animal diseases and facilitate early alert.


Subject(s)
Animal Diseases/epidemiology , Veterinary Medicine , Animals , Information Services , Internet , Population Surveillance , West Indies/epidemiology
10.
Vet Ital ; 43(3): 675-86, 2007.
Article in English | MEDLINE | ID: mdl-20422547

ABSTRACT

Rift Valley fever (RVF) is an acute arboviral disease of domestic ungulates and humans in Africa and the Middle East. Since the first epidemic in 1987, Senegal has been confronted with recurrent episodes of the disease. This study aimed to model spatial distribution of ruminants in the agropastoral area of Barkedji (Senegal) where the disease is enzootic. In this Sahelian ecosystem, livestock distribution mainly depends on the availability of resources. Accordingly, remote sensing and geographic information systems (GIS) were used to seek environmental indicators of livestock density. A high-resolution Landsat image was associated with landscape field data to describe the land-cover. A series of normalized difference vegetation index values gave an estimation of the phytomass. In addition the compounds of herders in the study zone were located and sampled. Three surveys were conducted during the rainy season to record the number of herds in each compound of the sample. All these data were overlaid in the GIS. A discriminant analysis was performed to associate the observed herd density with environmental data and to develop a predictive model for the entire study zone. The final result was a 1-km resolution raster map of herd density during a normal rainy season.

SELECTION OF CITATIONS
SEARCH DETAIL
...