Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 32
Filter
Add more filters










Publication year range
1.
FEBS J ; 2024 Jun 16.
Article in English | MEDLINE | ID: mdl-38879870

ABSTRACT

Defining the mechanisms that allow cells to adapt to environmental stress is critical for understanding the progression of chronic diseases and identifying relevant drug targets. Among these, activation of the pathway controlled by the eIF2-alpha kinase GCN2 is critical for translational and metabolic reprogramming of the cell in response to various metabolic, proteotoxic, and ribosomal stressors. However, its role has frequently been investigated through the lens of a stress pathway signaling via the eIF2α-activating transcription factor 4 (ATF4) downstream axis, while recent advances in the field have revealed that the GCN2 pathway is more complex than previously thought. Indeed, this kinase can be activated through a variety of mechanisms, phosphorylate substrates other than eIF2α, and regulate cell proliferation in a steady state. This review presents recent findings regarding the fundamental mechanisms underlying GCN2 signaling and function, as well as the development of drugs that modulate its activity. Furthermore, by comparing the literature on GCN2's antagonistic roles in two challenging pathologies, cancer and pulmonary diseases, the benefits, and drawbacks of GCN2 targeting, particularly inhibition, are discussed.

2.
Acta Biomater ; 182: 93-110, 2024 07 01.
Article in English | MEDLINE | ID: mdl-38788988

ABSTRACT

Cell culture on soft matrix, either in 2D and 3D, preserves the characteristics of progenitors. However, the mechanism by which the mechanical microenvironment determines progenitor phenotype, and its relevance to human biology, remains poorly described. Here we designed multi-well hydrogel plates with a high degree of physico-chemical uniformity to reliably address the molecular mechanism underlying cell state modification driven by physiological stiffness. Cell cycle, differentiation and metabolic activity could be studied in parallel assays, showing that the soft environment promotes an atypical S-phase quiescence and prevents cell drift, while preserving the differentiation capacities of human bronchoepithelial cells. These softness-sensitive responses are associated with calcium leakage from the endoplasmic reticulum (ER) and defects in proteostasis and enhanced basal ER stress. The analysis of available single cell data of the human lung also showed that this non-conventional state coming from the soft extracellular environment is indeed consistent with molecular feature of pulmonary basal cells. Overall, this study demonstrates that mechanical mimicry in 2D culture supports allows to maintain progenitor cells in a state of high physiological relevance for characterizing the molecular events that govern progenitor biology in human tissues. STATEMENT OF SIGNIFICANCE: This study focuses on the molecular mechanism behind the progenitor state induced by a soft environment. Using innovative hydrogel supports mimicking normal human lung stiffness, the data presented demonstrate that lung mechanics prevent drift while preserving the differentiation capabilities of lung epithelial cells. Furthermore, we show that the cells are positioned in a quiescent state in the atypical S phase. Mechanistically, we demonstrate that this quiescence: i) is driven by calcium leakage from the endoplasmic reticulum (ER) and basal activation of the PERK branch of ER stress signalling, and ii) protects cells from lethal ER stress caused by metabolic stress. Finally, we validate using human single-cell data that these molecular features identified on the soft matrix are found in basal lung cells. Our results reveal original and relevant molecular mechanisms orchestrating cell fate in a soft environment and resistance to exogenous stresses, thus providing new fundamental and clinical insights into basal cell biology.


Subject(s)
Endoplasmic Reticulum Stress , Extracellular Matrix , Humans , Extracellular Matrix/metabolism , Lung/metabolism , Cell Differentiation , Hydrogels/chemistry
3.
Front Immunol ; 15: 1368550, 2024.
Article in English | MEDLINE | ID: mdl-38426110

ABSTRACT

Acute exercise induces transient modifications in the tumor microenvironment and has been linked to reduced tumor growth along with increased infiltration of immune cells within the tumor in mouse models. In this study, we aimed to evaluate the impact of acute exercise before treatment administration on tumor growth in a mice model of MC38 colorectal cancer receiving an immune checkpoint inhibitor (ICI) and chemotherapy. Six-week-old mice injected with colorectal cancer cells (MC38) were randomized in 4 groups: control (CTRL), immuno-chemotherapy (TRT), exercise (EXE) and combined intervention (TRT/EXE). Both TRT and TRT-EXE received ICI: anti-PD1-1 (1 injection/week) and capecitabine + oxaliplatin (5 times a week) for 1 week (experimentation 1), 3 weeks (experimentation 2). TRT-EXE and EXE groups were submitted to 50 minutes of treadmill exercise before each treatment administration. Over the protocol duration, tumor size has been monitored daily. Tumor growth and microenvironment parameters were measured after the intervention on Day 7 (D7) and Day 16 (D16). From day 4 to day 7, tumor volumes decreased in the EXE/TRT group while remaining stable in the TRT group (p=0.0213). From day 7 until day 16 tumor volume decreased with no significant difference between TRT and TRT/EXE. At D7 the TRT/EXE group exhibited a higher total infiltrate T cell (p=0.0118) and CD8+ cytotoxic T cell (p=0.0031). At D16, tumor marker of apoptosis, vascular integrity and inflammation were not significantly different between TRT and TRT/EXE. Our main result was that acute exercise before immuno-chemotherapy administration significantly decreased early-phase tumor growth (D0 to D4). Additionally, exercise led to immune cell infiltration changes during the first week after exercise, while no significant molecular alterations in the tumor were observed 3 weeks after exercise.


Subject(s)
Colorectal Neoplasms , Physical Conditioning, Animal , Animals , Mice , Apoptosis , Colorectal Neoplasms/therapy , Disease Models, Animal , Immunotherapy/methods , Tumor Microenvironment
4.
Bio Protoc ; 14(3): e4933, 2024 Feb 05.
Article in English | MEDLINE | ID: mdl-38379826

ABSTRACT

As the most energy- and metabolite-consuming process, protein synthesis is under the control of several intrinsic and extrinsic factors that determine its fine-tuning to the cellular microenvironment. Consequently, variations in protein synthesis rates occur under various physiological and pathological conditions, enabling an adaptive response by the cell. For example, global protein synthesis increases upon mitogenic factors to support biomass generation and cell proliferation, while exposure to low concentrations of oxygen or nutrients require translational repression and reprogramming to avoid energy depletion and cell death. To assess fluctuations in protein synthesis rates, radioactive isotopes or radiolabeled amino acids are often used. Although highly sensitive, these techniques involve the use of potentially toxic radioactive compounds and require specific materials and processes for the use and disposal of these molecules. The development of alternative, non-radioactive methods that can be easily and safely implemented in laboratories has therefore been encouraged to avoid handling radioactivity. In this context, the SUrface SEnsing of Translation (SUnSET) method, based on the classical western blot technique, was developed by Schmidt et al. in 2009. The SUnSET is nowadays recognized as a simple alternative to radioactive methods assessing protein synthesis rates. Key features • As a structural analogue of aminoacyl-transfer RNA, puromycin incorporates into the elongating peptide chain. • Detection of puromycin-labeled peptides by western blotting reflects translation rates without the need for radioactive isotopes. • The protocol described here for in vitro applications is derived from the SUnSET method originally published by Schmidt et al. (2009).

5.
Mol Oncol ; 2023 Jul 15.
Article in English | MEDLINE | ID: mdl-37452637

ABSTRACT

Nutrient availability is a key determinant of tumor cell behavior. While nutrient-rich conditions favor proliferation and tumor growth, scarcity, and particularly glutamine starvation, promotes cell dedifferentiation and chemoresistance. Here, linking ribosome biogenesis plasticity with tumor cell fate, we uncover that the amino acid sensor general control non-derepressible 2 (GCN2; also known as eIF-2-alpha kinase 4) represses the expression of the precursor of ribosomal RNA (rRNA), 47S, under metabolic stress. We show that blockade of GCN2 triggers cell death by an irremediable nucleolar stress and subsequent TP53-mediated apoptosis in patient-derived models of colon adenocarcinoma (COAD). In nutrient-rich conditions, a cell-autonomous GCN2 activity supports cell proliferation by stimulating 47S rRNA transcription, independently of the canonical integrated stress response (ISR) axis. Impairment of GCN2 activity prevents nuclear translocation of methionyl-tRNA synthetase (MetRS), resulting in nucleolar stress, mTORC1 inhibition and, ultimately, autophagy induction. Inhibition of the GCN2-MetRS axis drastically improves the cytotoxicity of RNA polymerase I (RNA pol I) inhibitors, including the first-line chemotherapy oxaliplatin, on patient-derived COAD tumoroids. Our data thus reveal that GCN2 differentially controls ribosome biogenesis according to the nutritional context. Furthermore, pharmacological co-inhibition of the two GCN2 branches and RNA pol I activity may represent a valuable strategy for elimination of proliferative and metabolically stressed COAD cells.

6.
FEBS J ; 2022 Dec 14.
Article in English | MEDLINE | ID: mdl-36516350

ABSTRACT

Advances in cancer biology over the past decades have revealed that metabolic adaptation of cancer cells is an essential aspect of tumorigenesis. However, recent insights into tumour metabolism in vivo have revealed dissimilarities with results obtained in vitro. This is partly due to the reductionism of in vitro cancer models that struggle to reproduce the complexity of tumour tissues. This review describes some of the discrepancies in cancer cell metabolism between in vitro and in vivo conditions, and presents current methodological approaches and tools used to bridge the gap with the clinically relevant microenvironment. As such, these approaches should generate new knowledge that could be more effectively translated into therapeutic opportunities.

7.
Cancers (Basel) ; 14(11)2022 Jun 04.
Article in English | MEDLINE | ID: mdl-35681770

ABSTRACT

The kynurenine pathway has been highlighted as a gatekeeper of immune-privileged sites through its ability to generate from tryptophan a set of immunosuppressive metabolic intermediates. It additionally constitutes an important source of cellular NAD+ for the organism. Hijacking of its immunosuppressive functions, as recurrently observed in multiple cancers, facilitates immune evasion and promotes tumor development. Based on these observations, researchers have focused on characterizing indoleamine 2,3-dioxygenase (IDO1), the main enzyme catalyzing the first and limiting step of the pathway, and on developing therapies targeting it. Unfortunately, clinical trials studying IDO1 inhibitors have thus far not met expectations, highlighting the need to unravel this complex signaling pathway further. Recent advances demonstrate that these metabolites additionally promote tumor growth, metastatic dissemination and chemoresistance by a combination of paracrine and autocrine effects. Production of NAD+ also contributes to cancer progression by providing cancer cells with enhanced plasticity, invasive properties and chemoresistance. A comprehensive survey of this complexity is challenging but necessary to achieve medical success.

8.
Life Sci Alliance ; 5(7)2022 07.
Article in English | MEDLINE | ID: mdl-35396334

ABSTRACT

The glucose-requiring hexosamine biosynthetic pathway (HBP), which produces UDP-N-acetylglucosamine for glycosylation reactions, promotes lung adenocarcinoma (LUAD) progression. However, lung tumor cells often reside in low-nutrient microenvironments, and whether the HBP is involved in the adaptation of LUAD to nutrient stress is unknown. Here, we show that the HBP and the coat complex II (COPII) play a key role in cell survival during glucose shortage. HBP up-regulation withstood low glucose-induced production of proteins bearing truncated N-glycans, in the endoplasmic reticulum. This function for the HBP, alongside COPII up-regulation, rescued cell surface expression of a subset of glycoproteins. Those included the epidermal growth factor receptor (EGFR), allowing an EGFR-dependent cell survival under low glucose in anchorage-independent growth. Accordingly, high expression of the HBP rate-limiting enzyme GFAT1 was associated with wild-type EGFR activation in LUAD patient samples. Notably, HBP and COPII up-regulation distinguished LUAD from the lung squamous-cell carcinoma subtype, thus uncovering adaptive mechanisms of LUAD to their harsh microenvironment.


Subject(s)
Glucose , Hexosamines , ErbB Receptors/genetics , Glucose/metabolism , Glycosylation , Hexosamines/metabolism , Humans , Nutrients
9.
Metabolites ; 11(4)2021 Mar 26.
Article in English | MEDLINE | ID: mdl-33810430

ABSTRACT

Genetic alterations in non-small cell lung cancers (NSCLC) stimulate the generation of energy and biomass to promote tumor development. However, the efficacy of the translation process is finely regulated by stress sensors, themselves often controlled by nutrient availability and chemotoxic agents. Yet, the crosstalk between therapeutic treatment and glucose availability on cell mass generation remains understudied. Herein, we investigated the impact of pemetrexed (PEM) treatment, a first-line agent for NSCLC, on protein synthesis, depending on high or low glucose availability. PEM treatment drastically repressed cell mass and translation when glucose was abundant. Surprisingly, inhibition of protein synthesis caused by low glucose levels was partially dampened upon co-treatment with PEM. Moreover, PEM counteracted the elevation of the endoplasmic reticulum stress (ERS) signal produced upon low glucose availability, providing a molecular explanation for the differential impact of the drug on translation according to glucose levels. Collectively, these data indicate that the ERS constitutes a molecular crosstalk between microenvironmental stressors, contributing to translation reprogramming and proteostasis plasticity.

10.
Cancers (Basel) ; 12(3)2020 Mar 01.
Article in English | MEDLINE | ID: mdl-32121537

ABSTRACT

Endoplasmic reticulum (ER) stress generates reactive oxygen species (ROS) that induce apoptosis if left unabated. To limit oxidative insults, the ER stress PKR-like endoplasmic reticulum Kinase (PERK) has been reported to phosphorylate and activate nuclear factor erythroid 2-related factor 2 (NRF2). Here, we uncover an alternative mechanism for PERK-mediated NRF2 regulation in human cells that does not require direct phosphorylation. We show that the activation of the PERK pathway rapidly stimulates the expression of NRF2 through activating transcription factor 4 (ATF4). In addition, NRF2 activation is late and largely driven by reactive oxygen species (ROS) generated during late protein synthesis recovery, contributing to protecting against cell death. Thus, PERK-mediated NRF2 activation encompasses a PERK-ATF4-dependent control of NRF2 expression that contributes to the NRF2 protective response engaged during ER stress-induced ROS production.

12.
Sci Rep ; 6: 27278, 2016 06 03.
Article in English | MEDLINE | ID: mdl-27255611

ABSTRACT

The hexosamine biosynthetic pathway (HBP) is a nutrient-sensing metabolic pathway that produces the activated amino sugar UDP-N-acetylglucosamine, a critical substrate for protein glycosylation. Despite its biological significance, little is known about the regulation of HBP flux during nutrient limitation. Here, we report that amino acid or glucose shortage increase GFAT1 production, the first and rate-limiting enzyme of the HBP. GFAT1 is a transcriptional target of the activating transcription factor 4 (ATF4) induced by the GCN2-eIF2α signalling pathway. The increased production of GFAT1 stimulates HBP flux and results in an increase in O-linked ß-N-acetylglucosamine protein modifications. Taken together, these findings demonstrate that ATF4 provides a link between nutritional stress and the HBP for the regulation of the O-GlcNAcylation-dependent cellular signalling.


Subject(s)
Activating Transcription Factor 4/metabolism , Amino Acids/metabolism , Glucose/metabolism , Hexosamines/biosynthesis , Protein Serine-Threonine Kinases/metabolism , Acetylglucosamine/metabolism , Animals , Biosynthetic Pathways , Cell Line , HeLa Cells , Humans , Mice , Nitrogenous Group Transferases/metabolism , Rats , Signal Transduction
13.
Nat Biotechnol ; 34(7): 746-51, 2016 07.
Article in English | MEDLINE | ID: mdl-27272383

ABSTRACT

Widespread application of gene therapy will depend on the development of simple methods to regulate the expression of therapeutic genes. Here we harness an endogenous signaling pathway to regulate therapeutic gene expression through diet. The GCN2-eIF2α signaling pathway is specifically activated by deficiencies in any essential amino acid (EAA); EAA deficiency leads to rapid expression of genes regulated by ATF4-binding cis elements. We found that therapeutic genes under the control of optimized amino acid response elements (AAREs) had low basal expression and high induced expression. We applied our system to regulate the expression of TNFSF10 (TRAIL) in the context of glioma therapy and found that intermittent activation of this gene by EEA-deficient meals retained its therapeutic efficacy while abrogating its toxic effects on normal tissue. The GCN2-eIF2α pathway is expressed in many tissues, including the brain, and is highly specific to EAA deficiency. Our system may be particularly well suited for intermittent regulation of therapeutic transgenes over short or long time periods.


Subject(s)
Amino Acids, Essential/administration & dosage , Brain Neoplasms/genetics , Brain Neoplasms/therapy , Genetic Therapy/methods , TNF-Related Apoptosis-Inducing Ligand/genetics , TNF-Related Apoptosis-Inducing Ligand/therapeutic use , Administration, Oral , Amino Acids, Essential/pharmacokinetics , Animals , Dietary Supplements , Dose-Response Relationship, Drug , Eating/genetics , Gene Expression Regulation/drug effects , Gene Expression Regulation/genetics , Male , Mice , Transgenes/genetics , Treatment Outcome
14.
Cell Cycle ; 15(10): 1352-62, 2016 05 18.
Article in English | MEDLINE | ID: mdl-27050906

ABSTRACT

The mammalian target of rapamycin (mTOR) plays essential roles in the regulation of growth-related processes such as protein synthesis, cell sizing and metabolism in both normal and pathological growing conditions. These functions of mTOR are thought to be largely a consequence of its cytoplasmic activity in regulating translation rate, but accumulating data highlight supplementary role(s) for this serine/threonine kinase within the nucleus. Indeed, the nuclear activities of mTOR are currently associated with the control of protein biosynthetic capacity through its ability to regulate the expression of gene products involved in the control of ribosomal biogenesis and proliferation. Using primary murine embryo fibroblasts (MEFs), we observed that cells with overactive mTOR signaling displayed higher abundance for the growth-associated Npm1 protein, in what represents a novel mechanism of Npm1 gene regulation. We show that Npm1 gene expression is dependent on mTOR as demonstrated by treatment of wild-type and Pten inactivated MEFs cultured with rapamycin or by transient transfections of small interfering RNA directed against mTOR. In accordance, the mTOR kinase localizes to the Npm1 promoter gene in vivo and it enhances the activity of a human NPM1-luciferase reporter gene providing an opportunity for direct control. Interestingly, rapamycin did not dislodge mTOR from the Npm1 promoter but rather strongly destabilized the Npm1 transcript by increasing its turnover. Using a prostate-specific Pten-deleted mouse model of cancer, Npm1 mRNA levels were found up-regulated and sensitive to rapamycin. Finally, we also showed that Npm1 is required to promote mTOR-dependent cell proliferation. We therefore proposed a model whereby mTOR is closely involved in the transcriptional and posttranscriptional regulation of Npm1 gene expression with implications in development and diseases including cancer.


Subject(s)
Nuclear Proteins/metabolism , PTEN Phosphohydrolase/metabolism , TOR Serine-Threonine Kinases/metabolism , Animals , Cell Proliferation/drug effects , Cells, Cultured , HeLa Cells , Humans , Male , Mice , Mice, Knockout , Nuclear Proteins/antagonists & inhibitors , Nuclear Proteins/genetics , Nucleophosmin , PTEN Phosphohydrolase/deficiency , PTEN Phosphohydrolase/genetics , Promoter Regions, Genetic , Prostatic Neoplasms/metabolism , Prostatic Neoplasms/pathology , Proto-Oncogene Proteins c-akt/metabolism , RNA Interference , RNA, Messenger/metabolism , Signal Transduction/drug effects , Sirolimus/pharmacology , TOR Serine-Threonine Kinases/antagonists & inhibitors , TOR Serine-Threonine Kinases/genetics , Transplantation, Heterologous , Up-Regulation/drug effects
15.
Biotechniques ; 60(1): 47-9, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26757812

ABSTRACT

It has been reported that breast-feeding more than 6 months strongly decreases the risk of allergy, diabetes, obesity, and hypertension in humans. In order to understand the mechanisms responsible for this benefit, it is important to evaluate precisely the composition of maternal milk, especially in response to environmental cues. Mouse models offer a unique opportunity to study the impact of maternal milk composition on the development and health of offspring. Oxytocin injection of the dam is usually used to stimulate milk ejection; however, exogenous oxytocin might have deleterious effects under some experimental conditions by modifying milk content as well as the physiology and behavior of the dam. Taking advantage of the natural stimulation of the mammary gland that occurs after the reunion of a dam that has been separated from her pups, we developed a new procedure to collect mouse milk without the injection of oxytocin. This method is easy to use, low-cost ,and non-invasive. Moreover, it provides a sufficient amount of milk for use in a wide range of biological analyses.


Subject(s)
Breast Feeding , Mammary Glands, Animal/physiology , Milk Ejection/physiology , Milk , Animals , Breast/metabolism , Breast/physiology , Female , Humans , Mice , Oxytocin/pharmacology
17.
Sci Signal ; 8(374): rs5, 2015 Apr 28.
Article in English | MEDLINE | ID: mdl-25921292

ABSTRACT

The eIF2α-ATF4 pathway is involved in cellular adaptation to stress and is dysregulated in numerous diseases. Activation of this pathway leads to phosphorylation of the α subunit of eukaryotic initiation factor 2 (eIF2α) and the recruitment of the transcription factor ATF4 (activating transcription factor 4) to specific CCAAT/enhancer binding protein (C/EBP)-ATF response elements (CAREs) located in the promoters of target genes. To monitor the spatiotemporal modulation of this pathway in living animals, we generated a novel CARE-driven luciferase mouse model (CARE-LUC). These transgenic mice enable the investigation of the eIF2α-ATF4 pathway activity in the whole organism and at the tissue and cellular levels by combining imaging, luciferase assays, and immunochemistry. Using this mouse line, we showed the tissue-specific activation pattern of this pathway in response to amino acid deficiency or endoplasmic reticulum stress and the hepatic induction of this pathway in a stress-related pathology model of liver fibrosis. The CARE-LUC mouse model represents an innovative tool to investigate the eIF2α-ATF4 axis and to develop drugs targeting this important pathway in the remediation of related pathologies.


Subject(s)
Activating Transcription Factor 4/metabolism , Eukaryotic Initiation Factor-2/metabolism , Molecular Imaging , Signal Transduction , Stress, Physiological , Activating Transcription Factor 4/genetics , Animals , Eukaryotic Initiation Factor-2/genetics , Mice , Mice, Transgenic
18.
PLoS One ; 9(8): e104896, 2014.
Article in English | MEDLINE | ID: mdl-25118945

ABSTRACT

Epidemiological findings indicate that transient environmental influences during perinatal life, especially nutrition, may have deleterious heritable health effects lasting for the entire life. Indeed, the fetal organism develops specific adaptations that permanently change its physiology/metabolism and that persist even in the absence of the stimulus that initiated them. This process is termed "nutritional programming". We previously demonstrated that mothers fed a Low-Protein-Diet (LPD) during gestation and lactation give birth to F1-LPD animals presenting metabolic consequences that are different from those observed when the nutritional stress is applied during gestation only. Compared to control mice, adult F1-LPD animals have a lower body weight and exhibit a higher food intake suggesting that maternal protein under-nutrition during gestation and lactation affects the energy metabolism of F1-LPD offspring. In this study, we investigated the origin of this apparent energy wasting process in F1-LPD and demonstrated that minimal energy expenditure is increased, due to both an increased mitochondrial function in skeletal muscle and an increased mitochondrial density in White Adipose Tissue. Importantly, F1-LPD mice are protected against high-fat-diet-induced obesity. Clearly, different paradigms of exposure to malnutrition may be associated with differences in energy expenditure, food intake, weight and different susceptibilities to various symptoms associated with metabolic syndrome. Taken together these results demonstrate that intra-uterine environment is a major contributor to the future of individuals and disturbance at a critical period of development may compromise their health. Consequently, understanding the molecular mechanisms may give access to useful knowledge regarding the onset of metabolic diseases.


Subject(s)
Energy Metabolism/genetics , Lactation/physiology , Mitochondria/physiology , Obesity/prevention & control , Prenatal Exposure Delayed Effects/physiopathology , Protein Deficiency/physiopathology , Adipose Tissue, White/metabolism , Age Factors , Animals , Blotting, Western , Body Temperature , Body Weight , Calorimetry, Indirect , DNA Primers/genetics , Diet, High-Fat/adverse effects , Eating , Female , Mice , Mice, Inbred BALB C , Obesity/metabolism , Pregnancy , Real-Time Polymerase Chain Reaction , Reverse Transcriptase Polymerase Chain Reaction
19.
Cell Signal ; 26(7): 1385-91, 2014 Jul.
Article in English | MEDLINE | ID: mdl-24657471

ABSTRACT

CHOP encodes a ubiquitous transcription factor that is one of the most important components in the network of stress-inducible transcription. In particular, this factor is known to mediate cell death in response to stress. The focus of this work is to study its pivotal role in the control of cell viability according to the duration of a stress like amino acid starvation. We show that during the first 6h of starvation, CHOP upregulates a number of autophagy genes but is not involved in the first steps of the autophagic process. By contrast, when the amino acid starvation is prolonged (16-48h), we demonstrated that CHOP has a dual role in both inducing apoptosis and limiting autophagy through the transcriptional control of specific target genes. Overall, this study reveals a novel regulatory role for CHOP in the crosstalk between autophagy and apoptosis in response to stress.


Subject(s)
Amino Acids/deficiency , Apoptosis/genetics , Autophagy/genetics , Starvation , Transcription Factor CHOP/genetics , Animals , Cell Line , Cell Survival/genetics , Green Fluorescent Proteins/biosynthesis , Green Fluorescent Proteins/genetics , Luminescent Proteins/biosynthesis , Luminescent Proteins/genetics , Mice , Microtubule-Associated Proteins/biosynthesis , Microtubule-Associated Proteins/genetics , RNA, Messenger/biosynthesis , Stress, Physiological , Red Fluorescent Protein
20.
Cell Rep ; 6(3): 438-44, 2014 Feb 13.
Article in English | MEDLINE | ID: mdl-24485657

ABSTRACT

The reversible phosphorylation of the α subunit of eukaryotic initiation factor 2 (eIF2α) is a highly conserved signal implicated in the cellular adaptation to numerous stresses such as the one caused by amino acid limitation. In response to dietary amino acid deficiency, the brain-specific activation of the eIF2α kinase GCN2 leads to food intake inhibition. We report here that GCN2 is rapidly activated in the mediobasal hypothalamus (MBH) after consumption of a leucine-deficient diet. Furthermore, knockdown of GCN2 in this particular area shows that MBH GCN2 activity controls the onset of the aversive response. Importantly, pharmacological experiments demonstrate that the sole phosphorylation of eIF2α in the MBH is sufficient to regulate food intake. eIF2α signaling being at the crossroad of stress pathways activated in several pathological states, our study indicates that hypothalamic eIF2α phosphorylation could play a critical role in the onset of anorexia associated with certain diseases.


Subject(s)
Eating/physiology , Eukaryotic Initiation Factor-2/metabolism , Hypothalamus/metabolism , Signal Transduction , Animals , Arcuate Nucleus of Hypothalamus/metabolism , Gene Knockdown Techniques , Leucine/deficiency , Male , Mice , Mice, Inbred C57BL , Phosphorylation , Protein Serine-Threonine Kinases/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...