Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
JMIR Mhealth Uhealth ; 10(9): e33247, 2022 09 09.
Article in English | MEDLINE | ID: mdl-36083606

ABSTRACT

BACKGROUND: The popularization of mobile health (mHealth) apps for public health or medical care purposes has transformed human life substantially, improving lifestyle behaviors and chronic condition management. OBJECTIVE: This review aimed to identify behavior change techniques (BCTs) commonly used in mHealth, assess their effectiveness based on the evidence reported in interventions and reviews to highlight the most appropriate techniques to design an optimal strategy to improve adherence to data reporting, and provide recommendations for future interventions and research. METHODS: We performed a systematic review of studies published between 2010 and 2021 in relevant scientific databases to identify and analyze mHealth interventions using BCTs that evaluated their effectiveness in terms of user adherence. Search terms included a mix of general (eg, data, information, and adherence), computer science (eg, mHealth and BCTs), and medicine (eg, personalized medicine) terms. RESULTS: This systematic review included 24 studies and revealed that the most frequently used BCTs in the studies were feedback and monitoring (n=20), goals and planning (n=14), associations (n=14), shaping knowledge (n=12), and personalization (n=7). However, we found mixed effectiveness of the techniques in mHealth outcomes, having more effective than ineffective outcomes in the evaluation of apps implementing techniques from the feedback and monitoring, goals and planning, associations, and personalization categories, but we could not infer causality with the results and suggest that there is still a need to improve the use of these and many common BCTs for better outcomes. CONCLUSIONS: Personalization, associations, and goals and planning techniques were the most used BCTs in effective trials regarding adherence to mHealth apps. However, they are not necessarily the most effective since there are studies that use these techniques and do not report significant results in the proposed objectives; there is a notable overlap of BCTs within implemented app components, suggesting a need to better understand best practices for applying (a combination of) such techniques and to obtain details on the specific BCTs used in mHealth interventions. Future research should focus on studies with longer follow-up periods to determine the effectiveness of mHealth interventions on behavior change to overcome the limited evidence in the current literature, which has mostly small-sized and single-arm experiments with a short follow-up period.


Subject(s)
Mobile Applications , Telemedicine , Behavior Therapy/methods , Humans , Precision Medicine , Self Report , Telemedicine/methods
2.
Sensors (Basel) ; 20(16)2020 Aug 11.
Article in English | MEDLINE | ID: mdl-32796644

ABSTRACT

Face recognition is a valuable forensic tool for criminal investigators since it certainly helps in identifying individuals in scenarios of criminal activity like fugitives or child sexual abuse. It is, however, a very challenging task as it must be able to handle low-quality images of real world settings and fulfill real time requirements. Deep learning approaches for face detection have proven to be very successful but they require large computation power and processing time. In this work, we evaluate the speed-accuracy tradeoff of three popular deep-learning-based face detectors on the WIDER Face and UFDD data sets in several CPUs and GPUs. We also develop a regression model capable to estimate the performance, both in terms of processing time and accuracy. We expect this to become a very useful tool for the end user in forensic laboratories in order to estimate the performance for different face detection options. Experimental results showed that the best speed-accuracy tradeoff is achieved with images resized to 50% of the original size in GPUs and images resized to 25% of the original size in CPUs. Moreover, performance can be estimated using multiple linear regression models with a Mean Absolute Error (MAE) of 0.113, which is very promising for the forensic field.


Subject(s)
Deep Learning , Face , Child , Forensic Sciences , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...