Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Chem Biodivers ; 20(10): e202300862, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37647349

ABSTRACT

Several Baccharis species are popularly known in traditional medicine as "carquejas", "vassouras", "ervas-santas" and "mio-mios", and are used as anti-inflammatories, digestives, and diuretics. This study aimed to investigate the chemical compositions and cytotoxic activities of essential oils (EOs) of six Baccharis species belonging to subgenus Coridifoliae, namely B. albilanosa, B. coridifolia, B. erigeroides, B. napaea, B. ochracea, and B. pluricapitulata. GC/MS analyses of the EOs showed that the oxygenated sesquiterpenes spathulenol (7.32-38.22 %) and caryophyllene oxide (10.83-16.75 %) were the major components for all the species. The EOs of almost all species were cytotoxic against cancer (BT-549, KB, SK-MEL and SK-OV-3) and normal kidney (VERO and LLC-PK1) cell lines, whereas B. erigeroides EO showed cytotoxicity only against LLC-PK1. This article augments the current knowledge about the chemical-biological properties of Baccharis subgenus Coridifoliae and discusses the therapeutic potentials of these economically unexploited plants.

2.
Microorganisms ; 11(7)2023 Jul 10.
Article in English | MEDLINE | ID: mdl-37512956

ABSTRACT

The inappropriate use of antimicrobials, along with environmental conditions, can lead to the emergence of resistant microorganisms. The use of phytopharmaceuticals and herbal medicines has a positive impact and represents a promising alternative. Psidium guajava extracts have been widely reported to have antimicrobial potential; however, studies reporting their activity against resistant bacterial strains are scarce. Because of the emerging resistance, the aim of this study was to analyze the antimicrobial capacity of the aqueous extract of guava leaves against wild-type and resistant bacterial strains. The aqueous extract obtained from the leaves of P. guajava was evaluated by HPLC for the content of total phenolics and tannins, antioxidant activity, and chemical composition. The antimicrobial activity of the extracts was analyzed by the disk diffusion and broth microdilution methods. The results of the chemical analysis of the extracts showed total phenolics content of 17.02 ± 6.87 mg/g of dry extract, total tannin content of 14.09 ± 1.20 mg of tannic acid equivalents/g of dry extract, and moderate antioxidant capacity with an EC50 value of 140 µg/mL. Flavonoids are the major compounds (rutin, hesperidin, and quercetin), followed by phenolic acids. Disk diffusion test results showed the presence of inhibition halos for Gram-positive bacteria (Staphylococcus aureus, sensitive and resistant; Staphylococcus pseudintermedius, sensitive and resistant; and Streptococcus spp., beta-hemolytic), while for Gram-negative bacteria (Escherichia coli, sensitive and resistant), there was no inhibition in the tested concentration range. The Minimal Inhibitory Concentration was 6.8 mg/mL for all Gram-positive strains evaluated. The present study demonstrated the antimicrobial activity of the aqueous extract of P. guajava against sensitive and resistant Gram-positive bacteria. The better antimicrobial activity found in the present study compared with previously reported activity should be highlighted and may be related to the higher concentration of total phenolics present in the tested extract. Moreover, the content of tannins found suggests a species with high quality that produces tannins. These new findings suggest an innovative profile regarding therapeutic resources that can be adopted to combat resistant microbial strains.

3.
Rev Bras Parasitol Vet ; 32(1): e015122, 2023.
Article in English | MEDLINE | ID: mdl-36651425

ABSTRACT

Essential oil (EO) of Cannabis sativa (C. sativa) was evaluated against the egg, larval, pupal, and adult stages of the flea Ctenocephalides felis felis. The chemical composition of EO was determined by gas chromatography with flame ionization and mass spectrometry. EO mainly comprised γ-elemene (16.2%) and caryophyllene oxide (14.2%) as major compounds. To evaluate the mortality of flea stages in vitro, filter paper tests were performed at different concentrations. EO of C. sativa showed insecticidal activity (100% mortality at the highest concentrations) for flea control at egg, larval, pupal, and adult stages, with lethal concentrations (LC50) of 32.45; 91.61; 466.41 and 927.92 µg/cm2, respectively. EO of C. sativa indicated the potential for the development of ectoparasiticide for veterinary use, especially for fleas in egg and larval stages.


Subject(s)
Cannabis , Ctenocephalides , Insecticides , Oils, Volatile , Siphonaptera , Animals , Insecticides/toxicity , Oils, Volatile/pharmacology , Gas Chromatography-Mass Spectrometry/veterinary , Larva
4.
Vet Parasitol ; 309: 109771, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35944470

ABSTRACT

Fleas and ticks are among the main ectoparasites that affect pets. The indiscriminate and incorrect use of chemical antiparasitics may be related to increased insect resistance and environmental contamination, requiring prospection for active ingredients that are less harmful to animals, humans and the environment. The use of essential oils and their isolated compounds has been reported as a potential alternative to synthetic antiparasitics, but there is a lack of studies involving the design and development of stable and safe natural products-based formulations. Therefore, the aim of this study was to establish LC50 and LC90 of Ocimum gratissimum essential oil and eugenol on immature stages and adults of Ctenocephalides felis felis and Rhipicephalus sanguineus; and to design and to determine the in vitro efficacy and residual effect of a natural product-based spray formulation for flea and tick control in pets. Bioassays were carried out according to the filter paper impregnation technique for fleas and through the larval packet test for ticks. O. gratissimum essential oil and eugenol presented pulicidal and acaricidal activity in vitro against immature stages and adults of C. felis felis and immature stages of R. sanguineus. The greater potency of eugenol against fleas and ticks led to the choice of eugenol as the active ingredient in the pharmaceutical form developed. The developed eugenol-based sprays presented adequate physical and chemical characteristics and stability, had pulicidal and acaricidal efficacy after 24 h and residual effect against fleas for up to 48 days.


Subject(s)
Acaricides , Ctenocephalides , Ocimum , Oils, Volatile , Rhipicephalus sanguineus , Acaricides/pharmacology , Acaricides/therapeutic use , Animals , Ctenocephalides/drug effects , Eugenol/pharmacology , Eugenol/therapeutic use , Flea Infestations/drug therapy , Flea Infestations/veterinary , Ocimum/chemistry , Oils, Volatile/pharmacology , Oils, Volatile/therapeutic use , Rhipicephalus sanguineus/drug effects , Tick Infestations/drug therapy , Tick Infestations/veterinary
5.
Anim Health Res Rev ; 23(1): 25-38, 2022 06.
Article in English | MEDLINE | ID: mdl-35703023

ABSTRACT

Cannabis is used in the treatment of several human conditions; however, its use is still less explored in veterinary medicine. This systematic review aims to summarize the evidence of efficacy and safety of the use of cannabis for the treatment of animal disease. A literature search was performed for studies published until 16 March 2021 in five databases. Randomized clinical trials (RCTs) that reported the efficacy or safety of cannabis in the treatment of animal disease were included. The RoB 2 Tool was used to assess the risk of bias. A total of 2427 records were identified, of which six studies fully met the eligibility criteria. RCTs were conducted in dogs with osteoarthritis (n = 4), with epilepsy (n = 1), and with behavioral disorders (n = 1). All studies used cannabidiol (CBD) oil in monotherapy or in combination with other drugs. Studies used CBD at 2 or 2.5 mg kg-1 twice daily (n = 4), orally (n = 5), during 4 or 6 weeks (n = 3), and compared CBD with placebo (n = 5). CBD significantly reduced pain and increased activity in dogs with osteoarthritis (n = 3). Moreover, CBD significantly reduced the frequency of seizures in dogs with epilepsy (n = 1) and the aggressive behavior of dogs (n = 1). Although promising results were identified, studies were heterogeneous and presented risks of bias that required caution in the interpretation of findings. Therefore, there was some evidence to support the use of CBD in dogs with osteoarthritis to reduce pain and increased activity, but limited evidence against epilepsy and behavioral problems. In addition, CBD was well tolerated with mild adverse effects. More RCTs with high quality of evidence are needed, including greater numbers of animal subjects, additional species, and clear readout measures to confirm these findings.


Subject(s)
Cannabidiol , Cannabis , Dog Diseases , Epilepsy , Osteoarthritis , Animals , Cannabidiol/adverse effects , Dog Diseases/drug therapy , Dogs , Epilepsy/chemically induced , Epilepsy/drug therapy , Epilepsy/veterinary , Humans , Osteoarthritis/chemically induced , Osteoarthritis/drug therapy , Osteoarthritis/veterinary , Randomized Controlled Trials as Topic
6.
Food Res Int ; 151: 110864, 2022 01.
Article in English | MEDLINE | ID: mdl-34980400

ABSTRACT

This study determined the bioactive composition and antioxidant potential of parsley, chives and their mixture (Brazilian cheiro-verde). Additionally, the effect of these herbs against cholesterol oxidation in grilled sardines (Sardinella brasiliensis) was also investigated. Ultra-high Performance Liquid Chromatography-Electrospray Ionization-Mass Spectrometry (UHPLC-ESI-MS) analyses revealed the presence of phenolic acids (caffeic, chlorogenic, and ferulic acids) and flavonoids (apigenin, kaempferol, catechin) in the herbs. Higher levels of phenolics (2.10 ± 0.02 mg GAE/g) and carotenoids (205.95 ± 0.17 µg/g) were determined in parsley extracts. Moreover, parsley also presented higher antioxidant capacity by DPPH (59.21 ± 0.07 %) and ORAC (109.94 ± 18.7 µM TE/g) than the other herbs. In vivo analyses demonstrated that the herbs' extracts decreased the damage on Saccharomyces cerevisiae cells exposed to H2O2, except the chives extract at 10 µg/mL. Higher levels of cholesterol oxidation products (COPs) were determined after grilling. The total COPs increased from 61.8 ± 0.7 (raw fish) to 139.7 ± 10.1 µg/g (control). However, the addition of herbs effectively reduced cholesterol oxides formation, this effect was more pronounced in fish containing 4% parsley and 4% cheiro-verde. Promising results were found for cheiro-verde; however, it did not present synergic antioxidant effects.


Subject(s)
Chive , Petroselinum , Animals , Antioxidants/pharmacology , Cholesterol , Hydrogen Peroxide , Plant Extracts/pharmacology
7.
Rev Bras Parasitol Vet ; 30(4): e009321, 2021.
Article in English | MEDLINE | ID: mdl-34910016

ABSTRACT

The essential oils (EOs) of Illicium verum and Pelargonium graveolens were evaluated for lethality, inhibition of development and residual efficacy against the flea Ctenocephalides felis felis. Their chemical composition was characterized by means of gas chromatography with a flame ionization and mass spectrometry detection. Mortality at different immature stages and among adult fleas was measured through in vitro filter paper tests at different concentrations of EOs. The chemical characterization of I. verum volatile oil showed that E-anethole (79.96%) was the major constituent, while the major compounds in P. graveolens were citronellol (29.67%) and geraniol (14.85%). Insecticidal activity against both immature and adult flea stages were observed. The EO of I. verum had insecticidal activity for approximately 18 days, while the EO activity of P. graveolens lasted for 13 days. The pulicidal activity of I. verum remained above 70% for up to 9 days, while the activity of P. graveolens was 41.7% for up to 2 days. Essential oils, especially that of I. verum, showed insecticidal activity for flea control at different life cycle stages and have potential for the development of ectoparasiticides (biopesticides) for veterinary use.


Subject(s)
Ctenocephalides , Illicium , Oils, Volatile , Pelargonium , Animals , Ctenocephalides/drug effects , Gas Chromatography-Mass Spectrometry/veterinary , Illicium/chemistry , Oils, Volatile/pharmacology , Pelargonium/chemistry
8.
J Tradit Complement Med ; 11(3): 287-291, 2021 May.
Article in English | MEDLINE | ID: mdl-34012875

ABSTRACT

Petroselinum crispum var. neapolitanum Danert (Apiaceae) (PC), popularly known as parsley, is an herb native to the Mediterranean region widely cultivated around the world for culinary and ethnomedicinal purposes. The herb is traditionally used in various parts of the world to treat arterial hypertension, hemorrhoid, nose bleeding, hyperlipidemia, and pain, among other indications. The aim of this study was to evaluate the antithrombotic activity of an aqueous extract PC in rats. Aerial parts of a flat-leaf variety of parsley were extracted by decoction. In vivo thrombosis in rat models as well as ex vivo assays were used in the evaluation of PC antithrombotic effects. Intravenous administration of PC (25 mg/kg.b.w), 5 min before thrombosis induction, reduced the venous thrombus formation by 98.2%, while oral administration (125 mg/kg.b.w) impaired it by 76.2%. In the arterial thrombosis model, the oral administration of PC at 15 or 25 mg/kg.b.w, 60 min before thrombosis induction, increased the carotid artery occlusion time by 150% (37.0 ± 6.44 min) and 240% (more than 60 min), respectively. A HPLC-DAD-MS/MS profile of PC extract used in this study was provided. Apiin showed to be the most abundant phenolic compound in the extract. It also revealed the presence of many coumaric acid derivatives. Our results indicate that PC is a potential candidate for the development of a phytotherapeutic drug in the treatment of thromboembolic diseases and provide a detailed chemical profile useful for controlling PC extract production in view of phytotherapy.

9.
Rev. bras. parasitol. vet ; 30(4): e009321, 2021. tab, graf
Article in English | LILACS, VETINDEX | ID: biblio-1351872

ABSTRACT

Abstract The essential oils (EOs) of Illicium verum and Pelargonium graveolens were evaluated for lethality, inhibition of development and residual efficacy against the flea Ctenocephalides felis felis. Their chemical composition was characterized by means of gas chromatography with a flame ionization and mass spectrometry detection. Mortality at different immature stages and among adult fleas was measured through in vitro filter paper tests at different concentrations of EOs. The chemical characterization of I. verum volatile oil showed that E-anethole (79.96%) was the major constituent, while the major compounds in P. graveolens were citronellol (29.67%) and geraniol (14.85%). Insecticidal activity against both immature and adult flea stages were observed. The EO of I. verum had insecticidal activity for approximately 18 days, while the EO activity of P. graveolens lasted for 13 days. The pulicidal activity of I. verum remained above 70% for up to 9 days, while the activity of P. graveolens was 41.7% for up to 2 days. Essential oils, especially that of I. verum, showed insecticidal activity for flea control at different life cycle stages and have potential for the development of ectoparasiticides (biopesticides) for veterinary use.


Resumo Os óleos essenciais (OE) de Illicium verum e Pelargonium graveolens foram avaliados quanto à letalidade, inibição do desenvolvimento e eficácia residual contra a pulga Ctenocephalides felis felis. Sua composição química foi caracterizada por meio de cromatografia gasosa com detector de ionização de chama e espectrometria de massas. A mortalidade entre os diferentes estágios imaturos e pulgas adultas foi avaliada por meio de testes in vitro em papel filtro, contendo diferentes concentrações de OEs. A caracterização química do óleo volátil de I. verum mostrou que o E-anetol (79,96%) foi o constituinte majoritário, enquanto os principais compostos de P. graveolens foram citronelol (29,67%) e geraniol (14,85%). Foi observada atividade inseticida contra os estágios imaturos e adulto da pulga. O OE de I. verum teve atividade inseticida por aproximadamente 18 dias, enquanto o de P. graveolens durou 13 dias. A atividade pulicida de I. verum permaneceu acima de 70% até o 9º dia, enquanto a atividade de P. graveolens foi de 41,7% até o 2º dia. Os óleos essenciais, principalmente de I. verum, apresentam atividade inseticida para o controle de pulgas em diferentes estágios do ciclo de vida e têm potencial para o desenvolvimento de ectoparasiticidas (biopesticidas) de uso veterinário.


Subject(s)
Animals , Oils, Volatile/pharmacology , Illicium/chemistry , Pelargonium/chemistry , Ctenocephalides/drug effects , Gas Chromatography-Mass Spectrometry/veterinary
10.
Vet Parasitol ; 282: 109126, 2020 Jun.
Article in English | MEDLINE | ID: mdl-32417602

ABSTRACT

The aim of this study was to evaluate the in vitro activity of Syzygium aromaticum essential oil (SAEO) and its main constituent eugenol (EG) against adult fleas and their action in the maturation of eggs into adults of Ctenocephalides felis felis. In order to evaluate the pulicidal activity, 10 adult fleas were exposed to a filter paper impregnated with SAEO and EG at increasing concentrations of 0.047; 0.094; 0.188; 0.375; 0.750; 1.50; 3.00; 6.00; 12.00 and 24.00 µg cm-2. Flea mortality was evaluated 24 and 48 h after exposure. In order to evaluate the inhibition of the maturation of eggs into adults, 10 eggs were exposed to filter paper impregnated with SAEO and EG at the same concentrations used in the pulicidal test, and the evaluation was performed 30 days after incubation. Untreated repetitions were maintained in both studies (control group). The lethal concentration 50 (LC50) of pulicidal activity to SAEO was 5.70 µg cm-2 in 24 h and 3.91 µg cm-2 in 48 h. The LC90 was 16.10 µg cm-2 and 15.80 µg cm-2 in 24 and 48 h, respectively. The LC50 of inhibition of the maturation of eggs into adults was 0.30 µg cm-2 and the LC90 3.44 µg cm-2. The LC50 of pulicidal activity to EG was 2.40 µg cm-2 in 24 h and 1.40 µg cm-2 in 48 h; the LC90 was 8.10 µg cm-2 and 3.70 µg cm-2 in 24 h and 48 h, respectively. The LC50 of inhibition of the maturation of eggs into adults was 0.10 µg cm-2 and the LC90 0.68 µg cm-2. Based on the results obtained, it is possible to conclude that the both SAEO and EG have in vitro pulicidal activity as well as acting as inhibitors of the maturation of eggs into adults of the flea C. felis felis.


Subject(s)
Ctenocephalides , Eugenol , Insect Control , Insecticides , Oils, Volatile , Syzygium/chemistry , Animals , Ctenocephalides/drug effects , Ctenocephalides/growth & development , Female , Male
11.
Parasitology ; 147(3): 340-347, 2020 03.
Article in English | MEDLINE | ID: mdl-31840630

ABSTRACT

Essential oils (EOs) are considered a new class of ecological products aimed at the control of insects for industrial and domestic use; however, there still is a lack of studies involving the control of fleas. Ctenocephalides felis felis, the most observed parasite in dogs and cats, is associated with several diseases. The aim of this study was to evaluate the in vitro activity, the establishment of LC50 and toxicity of EOs from Alpinia zerumbet (Pers.) B. L. Burtt & R. M. Sm, Cinnamomum spp., Laurus nobilis L., Mentha spicata L., Ocimum gratissimum L. and Cymbopogon nardus (L.) Rendle against immature stages and adults of C. felis felis. Bioassay results suggest that the method of evaluation was able to perform a pre-screening of the activity of several EOs, including the discriminatory evaluation of flea stages by their LC50. Ocimum gratissimum EO was the most effective in the in vitro assays against all flea stages, presenting adulticide (LC50 = 5.85 µg cm-2), ovicidal (LC50 = 1.79 µg cm-2) and larvicidal (LC50 = 1.21 µg cm-2) mortality at low doses. It also presented an excellent profile in a toxicological eukaryotic model. These findings may support studies involving the development of non-toxic products for the control of fleas in dogs and cats.


Subject(s)
Ctenocephalides , Insect Control , Insecticides , Oils, Volatile , Alpinia/chemistry , Animals , Cinnamomum/chemistry , Ctenocephalides/growth & development , Cymbopogon/chemistry , In Vitro Techniques , Larva/growth & development , Laurus/chemistry , Mentha spicata/chemistry , Ocimum/chemistry , Ovum/growth & development
12.
Rev. bras. farmacogn ; 28(2): 179-191, Mar.-Apr. 2018. tab, graf
Article in English | LILACS | ID: biblio-958858

ABSTRACT

ABSTRACT Passiflora caerulea L., P. alata Curtis and P. incarnata L. (synonym for P. edulis Sims), are the most popular representatives of the Passiflora genus in South America. In recent years, a growing attention is paid to the biological activity and phytochemical profiles of crude extracts from various species of Passiflora in worldwide. The aim of this study was to evaluate and to compare of anti-leukemic activity of the dry crude extracts from leaves of three Passiflora species from greenhouse of Poland in two human acute lymphoblastic leukemia cell lines: CCRF-CEM and its multidrug resistant variant. Two systems of liquid chromatography in order to assessment of phytochemical composition of extracts were applied. Extracts of P. alata and P. incarnata showed the potent inhibitory activity against human acute lymphoblastic leukemia CCRF-CEM, while P. caerulea not showed activity (or activity was poor). Despite similarities in quality phytochemical profile of extracts from P. caerulea and P. incarnata, differences in quantity of chemical compounds may determine their various pharmacological potency. For the activity of P. alata extract the highest content of terpenoids and a lack of flavones C-glycosides are believed to be crucial. Summarizing, the crude extract from P. alata leaves may be considered as a substance for complementary therapy for cancer patients.

13.
Rev. bras. farmacogn ; 25(4): 356-362, July-Aug. 2015. tab, graf
Article in English | LILACS | ID: lil-763205

ABSTRACT

AbstractEssential oils extracted from Schinus molle L. and Schinus terebinthifolius Raddi, Anacardiaceae, leaves and fruit hydrodistillation, as well as, their chemical composition and extraction kinetic were evaluated. For this proposal, 6 h extraction and aliquots collected at sequencing different times (0.5, 1, 2, 4 and 6 h) were carried out allowing calculating accumulated content (% w/w) and verifying essential oil chemical profile. β-caryophyllene (35.2%), α-pinene (28.1%) and germacrene D (15.5%) represent S. terebinthifolius dried leaves essential oil major components, as well as, α-pinene (44.9%), germacrene D (17.6%) and β-pinene (15.1%) in the fruit. Cubenol (27.1%), caryophyllene oxide (15.3%) and spathulenol (12.4%) represent S. molle dried leaves essential oil major components, and β-pinene (36.3%) α-pinene (20.3%), germacrene D (12.1%) and spathulenol in the fruit. Essential oil extraction kinetics showed a hyperbolic distribution; monoterpene content presented exponential decay in time function and sesquiterpene showed exponential growth. Faster monoterpene extraction than the sesquiterpene extraction was observed, however, both presented increasing exponential distribution.

SELECTION OF CITATIONS
SEARCH DETAIL
...