Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Adv Mater ; 34(48): e2201691, 2022 Dec.
Article in English | MEDLINE | ID: mdl-35593428

ABSTRACT

The progress made toward the definition of a modular compact modeling technology for graphene field-effect transistors (GFETs) that enables the electrical analysis of arbitrary GFET-based integrated circuits is reported. A set of primary models embracing the main physical principles defines the ideal GFET response under DC, transient (time domain), AC (frequency domain), and noise (frequency domain) analysis. Another set of secondary models accounts for the GFET non-idealities, such as extrinsic-, short-channel-, trapping/detrapping-, self-heating-, and non-quasi static-effects, which can have a significant impact under static and/or dynamic operation. At both device and circuit levels, significant consistency is demonstrated between the simulation output and experimental data for relevant operating conditions. Additionally, a perspective of the challenges during the scale up of the GFET modeling technology toward higher technology readiness levels while drawing a collaborative scenario among fabrication technology groups, modeling groups, and circuit designers, is provided.

2.
Nanoscale Adv ; 2(8): 3252-3262, 2020 Aug 11.
Article in English | MEDLINE | ID: mdl-36134281

ABSTRACT

The pn junction is a fundamental electrical component in modern electronics and optoelectronics. Currently, there is a great deal of interest in the two-dimensional (2D) pn junction. Although many experiments have demonstrated the working principle, there is a lack of fundamental understanding of its basic properties and expected performances, in particular when the device is driven out-of-equilibrium. To fill the current gap in understanding, we investigate the electrostatics and electronic transport of 2D lateral pn junctions. To do so we implement a physics-based simulator that self-consistently solves the 2D Poisson's equation coupled to the drift-diffusion and continuity equations. Notably, the simulator takes into account the strong influence of the out-of-plane electric field through the surrounding dielectric, capturing the weak screening of charge carriers. Supported by simulations, we propose a Shockley-like equation for the ideal current-voltage (J-V) characteristics, in full analogy to the bulk junction after defining an effective depletion layer (EDL). We also discuss the impact of recombination-generation processes inside the EDL, which actually produce a significant deviation with respect to the ideal behavior, consistently with experimental data. Moreover, we analyze the capacitances and conductance of the 2D lateral pn junction. Based on its equivalent circuit we investigate its cut-off frequency targeting RF applications. To gain deeper insight into the role played by material dimensionality, we benchmark the performances of single-layer MoS2 (2D) lateral pn junctions against those of the Si (3D) junction. Finally, a practical discussion on the short length 2D junction case together with the expected impact of interface states has been provided. Given the available list of 2D materials, this work opens the door to a wider exploration of material-dependent performances.

3.
Nanoscale ; 11(21): 10273-10281, 2019 May 30.
Article in English | MEDLINE | ID: mdl-31086868

ABSTRACT

Creation of sharp lateral p-n junctions in graphene devices, with transition widths w well below the Fermi wavelength λF of graphene's charge carriers, is vital to study and exploit these electronic systems for electron-optical applications. The achievement of such junctions is, however, not trivial due to the presence of a considerable out-of-plane electric field in lateral p-n junctions, resulting in large widths. Metal-graphene interfaces represent a novel, promising and easy to implement technique to engineer such sharp lateral p-n junctions in graphene field-effect devices, in clear contrast to the much wider (i.e. smooth) junctions achieved via conventional local gating. In this work, we present a systematic and robust investigation of the electrostatic problem of metal-induced lateral p-n junctions in gated graphene devices for electron-optics applications, systems where the width w of the created junctions is not only determined by the metal used but also depends on external factors such as device geometries, dielectric environment and different operational parameters such as carrier density and temperature. Our calculations demonstrate that sharp junctions (w ≪ λF) can be achieved via metal-graphene interfaces at room temperature in devices surrounded by dielectric media with low relative permittivity (<10). In addition, we show how specific details such as the separation distance between metal and graphene and the permittivity of the gap in-between plays a critical role when defining the p-n junction, not only defining its width w but also the energy shift of graphene underneath the metal. These results can be extended to any two-dimensional (2D) electronic system doped by the presence of metal clusters and thus are relevant for understanding interfaces between metals and other 2D materials.

4.
ACS Appl Nano Mater ; 1(8): 3895-3902, 2018 Aug 24.
Article in English | MEDLINE | ID: mdl-30259010

ABSTRACT

Because of their extraordinary physical properties, low-dimensional materials including graphene and gallium selenide (GaSe) are promising for future electronic and optoelectronic applications, particularly in transparent-flexible photodetectors. Currently, the photodetectors working at the near-infrared spectral range are highly indispensable in optical communications. However, the current photodetector architectures are typically complex, and it is normally difficult to control the architecture parameters. Here, we report graphene-GaSe heterojunction-based field-effect transistors with broadband photodetection from 730-1550 nm. Chemical-vapor-deposited graphene was employed as transparent gate and contact electrodes with tunable resistance, which enables effective photocurrent generation in the heterojunctions. The photoresponsivity was shown from 10 to 0.05 mA/W in the near-infrared region under the gate control. To understand behavior of the transistor, we analyzed the results via simulation performed using a model for the gate-tunable graphene-semiconductor heterojunction where possible Fermi level pinning effect is considered.

5.
Nanotechnology ; 29(27): 275203, 2018 Jul 06.
Article in English | MEDLINE | ID: mdl-29664417

ABSTRACT

The increasing technological control of two-dimensional (2D) materials has allowed the demonstration of 2D lateral junctions exhibiting unique properties that might serve as the basis for a new generation of 2D electronic and optoelectronic devices. Notably, the chemically doped MoS2 homojunction, the WSe2-MoS2 monolayer and MoS2 monolayer/multilayer heterojunctions, have been demonstrated. Here we report the investigation of 2D lateral junction electrostatics, which differs from the bulk case because of the weaker screening, producing a much longer transition region between the space-charge region and the quasi-neutral region, making inappropriate the use of the complete-depletion region approximation. For such a purpose we have developed a method based on the conformal mapping technique to solve the 2D electrostatics, widely applicable to every kind of junctions, giving accurate results for even large asymmetric charge distribution scenarios.

6.
Adv Mater ; 28(9): 1845-52, 2016 Mar 02.
Article in English | MEDLINE | ID: mdl-26727653

ABSTRACT

A field-effect device based on dual graphene-GaSe heterojunctions is demonstrated. Monolayer graphene is used as electrodes on a GaSe channel to form two opposing Schottky diodes controllable by local top gates. The device exhibits strong rectification with tunable threshold voltage. Detailed theoretical modeling is used to explain the device operation and to distinguish the differences compared to a single diode.

SELECTION OF CITATIONS
SEARCH DETAIL
...