Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Mol Sci ; 23(18)2022 Sep 13.
Article in English | MEDLINE | ID: mdl-36142542

ABSTRACT

Despite decades of effort in understanding pancreatic ductal adenocarcinoma (PDAC), there is still a lack of innovative targeted therapies for this devastating disease. Herein, we report the expression of apelin and its receptor, APJ, in human pancreatic adenocarcinoma and its protumoral function. Apelin and APJ protein expression in tumor tissues from patients with PDAC and their spatiotemporal pattern of expression in engineered mouse models of PDAC were investigated by immunohistochemistry. Apelin signaling function in tumor cells was characterized in pancreatic tumor cell lines by Western blot as well as proliferation, migration assays and in murine orthotopic xenograft experiments. In premalignant lesions, apelin was expressed in epithelial lesions whereas APJ was found in isolated cells tightly attached to premalignant lesions. However, in the invasive stage, apelin and APJ were co-expressed by tumor cells. In human tumor cells, apelin induced a long-lasting activation of PI3K/Akt, upregulated ß-catenin and the oncogenes c-myc and cyclin D1 and promoted proliferation, migration and glucose uptake. Apelin receptor blockades reduced cancer cell proliferation along with a reduction in pancreatic tumor burden. These findings identify the apelin signaling pathway as a new actor for PDAC development and a novel therapeutic target for this incurable disease.


Subject(s)
Adenocarcinoma , Apelin Receptors/metabolism , Apelin/metabolism , Carcinoma, Pancreatic Ductal , Pancreatic Neoplasms , Adenocarcinoma/pathology , Animals , Carcinoma, Pancreatic Ductal/genetics , Cyclin D1/metabolism , Glucose , Humans , Mice , Oncogenes , Pancreatic Neoplasms/pathology , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Receptors, G-Protein-Coupled/genetics , Receptors, G-Protein-Coupled/metabolism , Signal Transduction , beta Catenin/metabolism , Pancreatic Neoplasms
2.
FASEB J ; 31(6): 2507-2519, 2017 06.
Article in English | MEDLINE | ID: mdl-28242772

ABSTRACT

Apelin signaling plays an important role during embryo development and regulates angiogenesis, cardiovascular activity, and energy metabolism in adulthood. Overexpression and hyperactivity of this signaling pathway is observed in various pathologic states, such as cardiovascular diseases and cancer, which highlights the importance of inhibiting apelin receptor (APJ); therefore, we developed a cell-based screening assay that uses fluorescence microscopy to identify APJ antagonists. This approach led us to identify the U.S. Food and Drug Administration-approved compound protamine-already used clinically after cardiac surgery-as an agent to bind to heparin and thereby reverse its anticlotting activity. Protamine displays a 390-nM affinity for APJ and behaves as a full antagonist with regard to G protein and ß-arrestin-dependent intracellular signaling. Ex vivo and in vivo, protamine abolishes well-known apelin effects, such as angiogenesis, glucose tolerance, and vasodilatation. Remarkably, protamine antagonist activity is fully reversed by heparin treatment both in vitro and in vivo Thus, our results demonstrate a new pharmacologic property of protamine-blockade of APJ-that could explain some adverse effects observed in protamine-treated patients. Moreover, our data reveal that the established antiangiogenic activity of protamine would rely on APJ antagonism.-Le Gonidec, S., Chaves-Almagro, C., Bai, Y., Kang, H. J., Smith, A., Wanecq, E., Huang, X.-P., Prats, H., Knibiehler, B., Roth, B. L., Barak, L. S., Caron, M. G., Valet, P., Audigier, Y., Masri, B. Protamine is an antagonist of apelin receptor, and its activity is reversed by heparin.


Subject(s)
Heparin/pharmacology , Protamines/pharmacology , Receptors, G-Protein-Coupled/antagonists & inhibitors , Animals , Apelin Receptors , Cell Line, Tumor , Female , Gene Expression Regulation/drug effects , Gene Expression Regulation/physiology , HEK293 Cells , Humans , Male , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Receptors, G-Protein-Coupled/genetics , Receptors, G-Protein-Coupled/metabolism
3.
Eur J Cancer ; 50(3): 663-74, 2014 Feb.
Article in English | MEDLINE | ID: mdl-24316062

ABSTRACT

Using a cancer profiling array, our laboratory has shown that apelin gene is up-regulated in half of colon adenocarcinomas. We have therefore postulated that apelin signalling might play a prominent role in the growth of colon tumours. We first confirmed by immunohistochemistry that apelin peptide is overexpressed in human colon adenomas and adenocarcinomas. We also observed a significant overexpression of apelin receptor (APJ) in adjacent sections. We then demonstrated that several colorectal cancer cell lines also expressed apelin and its receptor, the highest gene and peptide expression being detected in LoVo cells. In this cell line, the expression and functionality of apelin receptor were revealed by apelin-induced adenylyl cyclase inhibition and Akt phosphorylation. In addition, apelin clearly protected LoVo cells from apoptosis by inactivating a caspase-dependent pathway and decreasing the degradation of poly ADP ribose polymerase protein (PARP). Finally, treatment of these tumour cells by the (F13A)apelin13 receptor antagonist significantly reduced their proliferation rate. Altogether, these data suggest the existence of an autocrine loop by which constitutive activation of apelin signalling should participate in the growth of colon adenocarcinomas. Accordingly, apelin signalling is a promising pharmacological target for the treatment of human colon adenomas and adenocarcinomas.


Subject(s)
Adenocarcinoma/metabolism , Colonic Neoplasms/metabolism , Intercellular Signaling Peptides and Proteins/biosynthesis , Receptors, G-Protein-Coupled/biosynthesis , Adenocarcinoma/genetics , Apelin , Apelin Receptors , Apoptosis/physiology , Autocrine Communication , Cell Growth Processes/physiology , Cell Line, Tumor , Colonic Neoplasms/genetics , Gene Expression Profiling , Humans , Intercellular Signaling Peptides and Proteins/genetics , Intercellular Signaling Peptides and Proteins/metabolism , Phosphorylation , Receptors, G-Protein-Coupled/genetics , Receptors, G-Protein-Coupled/metabolism , Signal Transduction
4.
Prog Mol Biol Transl Sci ; 115: 143-73, 2013.
Article in English | MEDLINE | ID: mdl-23415094

ABSTRACT

G Protein-Coupled Receptors (GPCRs) share the same topology made of seven-transmembrane segments and represent the largest family of membrane receptors. Initially associated with signal transduction in differentiated cells, GPCRs and heterotrimeric G proteins were shown to behave as proto-oncogenes whose overexpression or activating mutations confer transforming properties. The first part of this review focuses on the link between biochemical interactions of a GPCR with other receptors, such as dimerization or multiprotein complexes, and their oncogenic properties. Alteration of these interactions or deregulation of transduction cascades can promote uncontrolled cell proliferation or cell transformation that leads to tumorigenicity and malignancy. The second part concerns the design of drugs specifically targeting these complex interactions and their promise in cancer therapy.


Subject(s)
Antineoplastic Agents/therapeutic use , Drug Design , Neoplasms/drug therapy , Neoplasms/metabolism , Receptors, G-Protein-Coupled/metabolism , Animals , Antineoplastic Agents/pharmacology , Humans , Protein Binding/drug effects , Signal Transduction/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...