Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Science ; 327(5963): 343-8, 2010 Jan 15.
Article in English | MEDLINE | ID: mdl-20075255

ABSTRACT

We report here genome sequences and comparative analyses of three closely related parasitoid wasps: Nasonia vitripennis, N. giraulti, and N. longicornis. Parasitoids are important regulators of arthropod populations, including major agricultural pests and disease vectors, and Nasonia is an emerging genetic model, particularly for evolutionary and developmental genetics. Key findings include the identification of a functional DNA methylation tool kit; hymenopteran-specific genes including diverse venoms; lateral gene transfers among Pox viruses, Wolbachia, and Nasonia; and the rapid evolution of genes involved in nuclear-mitochondrial interactions that are implicated in speciation. Newly developed genome resources advance Nasonia for genetic research, accelerate mapping and cloning of quantitative trait loci, and will ultimately provide tools and knowledge for further increasing the utility of parasitoids as pest insect-control agents.


Subject(s)
Biological Evolution , Genome, Insect , Wasps/genetics , Animals , Arthropods/parasitology , DNA Methylation , DNA Transposable Elements , Female , Gene Transfer, Horizontal , Genes, Insect , Genetic Speciation , Genetic Variation , Host-Parasite Interactions , Insect Proteins/genetics , Insect Proteins/metabolism , Insect Viruses/genetics , Insecta/genetics , Male , Molecular Sequence Data , Quantitative Trait Loci , Recombination, Genetic , Sequence Analysis, DNA , Wasp Venoms/chemistry , Wasp Venoms/toxicity , Wasps/physiology , Wolbachia/genetics
2.
Nature ; 452(7190): 949-55, 2008 Apr 24.
Article in English | MEDLINE | ID: mdl-18362917

ABSTRACT

Tribolium castaneum is a member of the most species-rich eukaryotic order, a powerful model organism for the study of generalized insect development, and an important pest of stored agricultural products. We describe its genome sequence here. This omnivorous beetle has evolved the ability to interact with a diverse chemical environment, as shown by large expansions in odorant and gustatory receptors, as well as P450 and other detoxification enzymes. Development in Tribolium is more representative of other insects than is Drosophila, a fact reflected in gene content and function. For example, Tribolium has retained more ancestral genes involved in cell-cell communication than Drosophila, some being expressed in the growth zone crucial for axial elongation in short-germ development. Systemic RNA interference in T. castaneum functions differently from that in Caenorhabditis elegans, but nevertheless offers similar power for the elucidation of gene function and identification of targets for selective insect control.


Subject(s)
Genes, Insect/genetics , Genome, Insect/genetics , Tribolium/genetics , Animals , Base Composition , Body Patterning/genetics , Cytochrome P-450 Enzyme System/genetics , DNA Transposable Elements/genetics , Growth and Development/genetics , Humans , Insecticides/pharmacology , Neurotransmitter Agents/genetics , Oogenesis/genetics , Phylogeny , Proteome/genetics , RNA Interference , Receptors, G-Protein-Coupled/genetics , Receptors, Odorant/genetics , Repetitive Sequences, Nucleic Acid/genetics , Taste/genetics , Telomere/genetics , Tribolium/classification , Tribolium/embryology , Tribolium/physiology , Vision, Ocular/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...