Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 55
Filter
1.
Nat Cardiovasc Res ; 1(9): 855-866, 2022 Sep.
Article in English | MEDLINE | ID: mdl-36405497

ABSTRACT

Advancements in cross-linking mass spectrometry (XL-MS) bridge the gap between purified systems and native tissue environments, allowing the detection of protein structural interactions in their native state. Here we use isobaric quantitative protein interaction reporter technology (iqPIR) to compare the mitochondria protein interactomes in healthy and hypertrophic murine hearts, 4 weeks post-transaortic constriction. The failing heart interactome includes 588 statistically significant cross-linked peptide pairs altered in the disease condition. We observed an increase in the assembly of ketone oxidation oligomers corresponding to an increase in ketone metabolic utilization; remodeling of NDUA4 interaction in Complex IV, likely contributing to impaired mitochondria respiration; and conformational enrichment of ADP/ATP carrier ADT1, which is non-functional for ADP/ATP translocation but likely possesses non-selective conductivity. Our application of quantitative cross-linking technology in cardiac tissue provides molecular-level insights into the complex mitochondria remodeling in heart failure while bringing forth new hypotheses for pathological mechanisms.

2.
J Clin Invest ; 132(10)2022 05 16.
Article in English | MEDLINE | ID: mdl-35575090

ABSTRACT

In hypertrophied and failing hearts, fuel metabolism is reprogrammed to increase glucose metabolism, especially glycolysis. This metabolic shift favors biosynthetic function at the expense of ATP production. Mechanisms responsible for the switch are poorly understood. We found that inhibitory factor 1 of the mitochondrial FoF1-ATP synthase (ATPIF1), a protein known to inhibit ATP hydrolysis by the reverse function of ATP synthase during ischemia, was significantly upregulated in pathological cardiac hypertrophy induced by pressure overload, myocardial infarction, or α-adrenergic stimulation. Chemical cross-linking mass spectrometry analysis of hearts hypertrophied by pressure overload suggested that increased expression of ATPIF1 promoted the formation of FoF1-ATP synthase nonproductive tetramer. Using ATPIF1 gain- and loss-of-function cell models, we demonstrated that stalled electron flow due to impaired ATP synthase activity triggered mitochondrial ROS generation, which stabilized HIF1α, leading to transcriptional activation of glycolysis. Cardiac-specific deletion of ATPIF1 in mice prevented the metabolic switch and protected against the pathological remodeling during chronic stress. These results uncover a function of ATPIF1 in nonischemic hearts, which gives FoF1-ATP synthase a critical role in metabolic rewiring during the pathological remodeling of the heart.


Subject(s)
Glycolysis , Mitochondrial Proton-Translocating ATPases , Proteins/metabolism , Adenosine Triphosphate/metabolism , Animals , Mice , Myocardium/metabolism , Transcriptional Activation , Up-Regulation , ATPase Inhibitory Protein
3.
Mol Cell Proteomics ; 21(7): 100249, 2022 07.
Article in English | MEDLINE | ID: mdl-35609787

ABSTRACT

The methylation of histidine is a post-translational modification whose function is poorly understood. Methyltransferase histidine protein methyltransferase 1 (Hpm1p) monomethylates H243 in the ribosomal protein Rpl3p and represents the only known histidine methyltransferase in Saccharomyces cerevisiae. Interestingly, the hpm1 deletion strain is highly pleiotropic, with many extraribosomal phenotypes including improved growth rates in alternative carbon sources. Here, we investigate how the loss of histidine methyltransferase Hpm1p results in diverse phenotypes, through use of targeted mass spectrometry (MS), growth assays, quantitative proteomics, and differential crosslinking MS. We confirmed the localization and stoichiometry of the H243 methylation site, found unreported sensitivities of Δhpm1 yeast to nonribosomal stressors, and identified differentially abundant proteins upon hpm1 knockout with clear links to the coordination of sugar metabolism. We adapted the emerging technique of quantitative large-scale stable isotope labeling of amino acids in cell culture crosslinking MS for yeast, which resulted in the identification of 1267 unique in vivo lysine-lysine crosslinks. By reproducibly monitoring over 350 of these in WT and Δhpm1, we detected changes to protein structure or protein-protein interactions in the ribosome, membrane proteins, chromatin, and mitochondria. Importantly, these occurred independently of changes in protein abundance and could explain a number of phenotypes of Δhpm1, not addressed by expression analysis. Further to this, some phenotypes were predicted solely from changes in protein structure or interactions and could be validated by orthogonal techniques. Taken together, these studies reveal a broad role for Hpm1p in yeast and illustrate how crosslinking MS will be an essential tool for understanding complex phenotypes.


Subject(s)
Methyltransferases , Saccharomyces cerevisiae Proteins , Saccharomyces cerevisiae , Histidine/metabolism , Lysine/metabolism , Methyltransferases/metabolism , Proteome/metabolism , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/metabolism
4.
J Proteome Res ; 21(6): 1475-1484, 2022 06 03.
Article in English | MEDLINE | ID: mdl-35594376

ABSTRACT

Chemical cross-linking of proteins in complex samples, cells, or even tissues is emerging to provide unique structural information on proteins and complexes that exist within native or nativelike environments. The public database XLinkDB automatically maps cross-links to available structures based on sequence homology. Structures most likely to reflect protein conformations in the cross-linked sample are routinely identified by having cross-linked residues separated by Euclidean distances within the maximum span of the applied cross-linker. Solvent accessible surface distance (SASD), which considers the accessibility of the cross-linked residues and the path connecting them, is a better predictor of consistency than the Euclidean distance. However, SASDs of structures are not publicly available, and their calculation is computationally intensive. Here, we describe in XLinkDB version 4.0 the automatic calculation of SASDs using Jwalk for all cross-links mapped to structures, both with and without regard to ligands, and derive empirical maximum SASD spans for BDP-NHP and DSSO cross-linkers of 51 and 43 Å, respectively. We document ligands proximal to cross-links in structures and demonstrate how SASDs can be used to help infer sample protein conformations and ligand occupancy, highlighting cross-links sensitive to ADP binding in mitochondria isolated from HEK293 cells.


Subject(s)
Proteins , Cross-Linking Reagents/chemistry , HEK293 Cells , Humans , Ligands , Protein Conformation , Proteins/chemistry
5.
Anal Chem ; 94(6): 2713-2722, 2022 02 15.
Article in English | MEDLINE | ID: mdl-35107270

ABSTRACT

The study of protein structures and interactions is critical to understand their function. Chemical cross-linking of proteins with mass spectrometry (XL-MS) is a rapidly developing structural biology technique able to provide valuable insight into protein conformations and interactions, even as they exist within their native cellular environment. Quantitative analysis of cross-links can reveal protein conformational and interaction changes that occur as a result of altered biological states, environmental conditions, or pharmacological perturbations. Our laboratory recently developed an isobaric quantitative protein interaction reporter (iqPIR) cross-linking strategy for comparative interactome studies. This strategy relies on isotope encoded chemical cross-linkers that have the same molecular mass yet produce unique and specific isotope signatures upon fragmentation in the mass spectrometer which can be used for quantitative analysis of cross-linked peptides. The initial set of iqPIR molecules allowed for binary comparisons. Here, we describe the in vivo application of an extended set of six iqPIR reagents (6-plex iqPIR), allowing multiplexed quantitative interactome analysis of up to six biological samples in a single LC-MS acquisition. Multiplexed iqPIR is demonstrated on MCF-7 breast cancer cells treated with five different Hsp90 inhibitors revealing large scale protein conformational and interaction changes specific to the molecular class of the inhibitors.


Subject(s)
Breast Neoplasms , Breast Neoplasms/drug therapy , Cross-Linking Reagents/chemistry , Female , Humans , Mass Spectrometry/methods , Peptides/chemistry , Protein Conformation , Proteins/analysis
6.
Curr Opin Chem Biol ; 66: 102076, 2022 02.
Article in English | MEDLINE | ID: mdl-34393043

ABSTRACT

Structural plasticity and dynamic protein-protein interactions are critical determinants of protein function within living systems. Quantitative chemical cross-linking with mass spectrometry (qXL-MS) is an emerging technology able to provide information on changes in protein conformations and interactions. Importantly, qXL-MS is applicable to complex biological systems, including living cells and tissues, thereby providing insights into proteins within their native environments. Here, we present an overview of recent technological developments and applications involving qXL-MS, including design and synthesis of isotope-labeled cross-linkers, development of new liquid chromatography-MS methodologies, and computational developments enabling interpretation of the data.


Subject(s)
Proteins , Chromatography, Liquid , Cross-Linking Reagents/chemistry , Mass Spectrometry/methods , Protein Conformation , Proteins/chemistry
7.
Mass Spectrom Rev ; 41(2): 248-261, 2022 03.
Article in English | MEDLINE | ID: mdl-33289940

ABSTRACT

The set of all intra- and intermolecular interactions, collectively known as the interactome, is currently an unmet challenge for any analytical method, but if measured, could provide unparalleled insight on molecular function in living systems. Developments and applications of chemical cross-linking and high-performance mass spectrometry technologies are beginning to reveal details on how proteins interact in cells and how protein conformations and interactions inside cells change with phenotype or during drug treatment or other perturbations. A major contributor to these advances is Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR-MS) technology and its implementation with accurate mass measurements on cross-linked peptide-pair precursor and fragment ions to enable improved identification methods. However, these applications place increased demands on mass spectrometer performance in terms of high-resolution spectral acquisition rates for on-line MSn experiments. Moreover, FT-ICR-MS also offers unique opportunities to develop and implement parallel ICR cells for multiplexed signal acquisition and the potential to greatly advance accurate mass acquisition rates for interactome studies. This review highlights our efforts to exploit accurate mass FT-ICR-MS technologies with chemical cross-linking and developments being pursued to realize parallel MS array capabilities that will further advance visualization of the interactome.


Subject(s)
Cyclotrons , Proteins , Fourier Analysis , Ions/chemistry , Mass Spectrometry/methods
8.
Chem Rev ; 122(8): 7647-7689, 2022 04 27.
Article in English | MEDLINE | ID: mdl-34232610

ABSTRACT

Biological systems have evolved to utilize proteins to accomplish nearly all functional roles needed to sustain life. A majority of biological functions occur within the crowded environment inside cells and subcellular compartments where proteins exist in a densely packed complex network of protein-protein interactions. The structural biology field has experienced a renaissance with recent advances in crystallography, NMR, and CryoEM that now produce stunning models of large and complex structures previously unimaginable. Nevertheless, measurements of such structural detail within cellular environments remain elusive. This review will highlight how advances in mass spectrometry, chemical labeling, and informatics capabilities are merging to provide structural insights on proteins, complexes, and networks that exist inside cells. Because of the molecular detection specificity provided by mass spectrometry and proteomics, these approaches provide systems-level information that not only benefits from conventional structural analysis, but also is highly complementary. Although far from comprehensive in their current form, these approaches are currently providing systems structural biology information that can uniquely reveal how conformations and interactions involving many proteins change inside cells with perturbations such as disease, drug treatment, or phenotypic differences. With continued advancements and more widespread adaptation, systems structural biology based on in-cell labeling and mass spectrometry will provide an even greater wealth of structural knowledge.


Subject(s)
Proteins , Proteomics , Mass Spectrometry/methods , Proteins/chemistry , Proteomics/methods
9.
Anal Chem ; 93(50): 16759-16768, 2021 12 21.
Article in English | MEDLINE | ID: mdl-34882395

ABSTRACT

Chemical cross-linking with mass spectrometry (XL-MS) has emerged as a useful technique for interrogating protein structures and interactions. When combined with quantitative proteomics strategies, protein conformational and interaction dynamics can be probed. Quantitative XL-MS has been demonstrated with the use of stable isotopes incorporated metabolically or into the cross-linker molecules. Isotope-labeled cross-linkers have primarily utilized deuterium and rely on MS1-based quantitation of precursor ion extracted ion chromatograms. Recently the development and application of isobaric quantitative protein interaction reporter (iqPIR) cross-linkers were reported, which utilize 13C and 15N isotope labels. Quantitation is accomplished using relative fragment ion isotope abundances in tandem mass spectra. Here we describe the synthesis and initial evaluation of a multiplexed set of iqPIR molecules, allowing for up to six cross-linked samples to be quantified simultaneously. To analyze data for such cross-linkers, the two-channel mode of iqPIR quantitative analysis was adapted to accommodate any number of channels with defined ion isotope peak mass offsets. The summed ion peak intensities in the overlapping channel isotope envelopes are apportioned among the channels to minimize the difference with respect to the predicted ion isotope envelopes. The result is accurate and reproducible relative quantitation enabling direct comparison among six differentially labeled cross-linked samples. The approach described here is generally extensible for the iqPIR strategy, accommodating future iqPIR reagent design, and enables large-scale in vivo quantitative XL-MS investigation of the interactome.


Subject(s)
Proteomics , Technology
10.
Mol Ecol ; 30(20): 5064-5079, 2021 10.
Article in English | MEDLINE | ID: mdl-34379848

ABSTRACT

Anthropogenic climate change threatens corals globally and both high and low temperatures are known to induce coral bleaching. However, coral stress responses across wide thermal breadths remain understudied. Disentangling the role of symbiosis on the stress response in obligately symbiotic corals is challenging because this response is inherently coupled with nutritional stress. Here, we leverage aposymbiotic colonies of the facultatively symbiotic coral, Astrangia poculata, which lives naturally with and without its algal symbionts, to examine how broad thermal challenges influence coral hosts in the absence of symbiosis. A. poculata were collected from their northern range limit and thermally challenged in two independent 16-day common garden experiments (heat and cold challenge) and behavioural responses to food stimuli and genome-wide gene expression profiling (TagSeq) were performed. Both thermal challenges elicited significant reductions in polyp extension. However, there were five times as many differentially expressed genes (DEGs) under cold challenge compared to heat challenge. Despite an overall stronger response to cold challenge, there was significant overlap in DEGs between thermal challenges. We contrasted these responses to a previously identified module of genes associated with the environmental stress response (ESR) in tropical reef-building corals. Cold challenged corals exhibited a pattern consistent with more severe stressors while the heat challenge response was consistent with lower intensity stressors. Given that these responses were observed in aposymbiotic colonies, many genes previously implicated in ESRs in tropical symbiotic species may represent the coral host's stress response in or out of symbiosis.


Subject(s)
Anthozoa , Coral Reefs , Animals , Anthozoa/genetics , Hot Temperature , Stress, Physiological , Symbiosis
11.
Mol Omics ; 17(4): 503-516, 2021 08 09.
Article in English | MEDLINE | ID: mdl-34017973

ABSTRACT

RNA-binding proteins (RBPs) have conserved domains and consensus sequences that interact with RNAs and other proteins forming ribonucleoprotein (RNP) complexes. RNPs are involved in the regulation of several cellular processes, including transcription, pre-mRNA splicing, mRNA transport, localization, degradation and storage, and ultimately control of translation. Heterogeneous nuclear ribonucleoproteins (hnRNPs) comprise a family of RBPs that mediate transcription control and nuclear processing of transcripts. Some hnRNPs are part of the spliceosome complex, a dynamic machinery formed by RNPs that regulate alternative splicing of pre-mRNAs. Here, chemical crosslinking of proteins was applied to identify specific interacting regions and protein structural features of hnRNPs: hnRNPA1, hnRNPA2/B1, hnRNPC, and RALY. The results reveal interaction of these proteins within RNA-binding domains and conserved motifs, providing evidence of a coordinated action of known regulatory sequences of RBPs. Moreover, these crosslinking data enable structural model generation for RBPs, illustrating how crosslinking mass spectrometry can complement other structural methods.


Subject(s)
Heterogeneous-Nuclear Ribonucleoproteins , Ribonucleoproteins , RNA
12.
Protein Sci ; 30(4): 773-784, 2021 04.
Article in English | MEDLINE | ID: mdl-33594738

ABSTRACT

Protein structure underpins functional roles in all biological processes; therefore, improved understanding of protein structures is of fundamental importance in nearly all biological and biomedical research areas. Traditional techniques such as X-ray crystallography and more recently, cryo-EM, can reveal structural features on isolated proteins/protein complexes at atomic resolution level and have become indispensable tools for structural biology. Crosslinking mass spectrometry (XL-MS), on the other hand, is an emerging technique capable of capturing transient and dynamic information on protein interactions and assemblies in their native environment. The combination of XL-MS with traditional techniques holds potential for bridging the gap between structural biology and systems biology approaches. Such a combination will enable visualization of protein structures and interactions within the crowded macromolecular environment in living systems that can dramatically increase understanding of biological functions. In this review, we first discuss general strategies of XL-MS and then survey recent examples to show how qualitative and quantitative XL-MS studies can be integrated with available protein structural data to better understand biological function at systems level.


Subject(s)
Models, Molecular , Molecular Biology , Proteins/chemistry , Systems Biology , Crystallography, X-Ray , Mass Spectrometry
13.
J Proteome Res ; 20(1): 1087-1095, 2021 01 01.
Article in English | MEDLINE | ID: mdl-33263396

ABSTRACT

XLinkDB is a fast-expanding public database now storing more than 100 000 distinct identified cross-linked protein residue pairs acquired by chemical cross-linking with mass spectrometry from samples of 12 species (J. Proteome Res.2019, 18 (2), 753-758). Mapping identified cross-links to protein structures, when available, provides valuable guidance on protein conformations detected in the cross-linked samples. As more and more structures become available in the Protein Data Bank (Nucleic Acids Res.2000, 28 (1), 235-242), we sought to leverage their utility for cross-link studies by automatically mapping identified cross-links to structures based on sequence homology of the cross-linked proteins with those within structures. This enables use of structures derived from organisms different from those of samples, including large multiprotein complexes and complexes in alternative states. We demonstrate utility of mapping to orthologous structures, highlighting a cross-link between two subunits of mouse mitochondrial Complex I that was mapped to 15 structures derived from five mammals, its distances there of 16.2 ± 0.4 Å indicating strong conservation of the protein interaction. We also show how multimeric structures enable reassessment of cross-links presumed to be intraprotein as potentially homodimeric interprotein in origin.


Subject(s)
Protein Interaction Mapping , Proteome , Animals , Cross-Linking Reagents , Databases, Protein , Mass Spectrometry , Mice , Protein Conformation
14.
Anal Chem ; 92(20): 14094-14102, 2020 10 20.
Article in English | MEDLINE | ID: mdl-32969639

ABSTRACT

Chemical cross-linking with mass spectrometry (XL-MS) has emerged as a useful tool for the large-scale study of protein structures and interactions from complex biological samples including intact cells and tissues. Quantitative XL-MS (qXL-MS) provides unique information on protein conformational and interaction changes resulting from perturbations such as drug treatment and disease state. Previous qXL-MS studies relied on the incorporation of stable isotopes into the cross-linker (primarily deuterium) or metabolic labeling with SILAC. Here, we introduce isobaric quantitative protein interaction reporter (iqPIR) technology which utilizes stable isotopes selectively incorporated into the cross-linker design, allowing for isobaric cross-linked peptide pairs originating from different samples to display distinct quantitative isotope signatures in tandem mass spectra. This enables improved quantitation of cross-linked peptide levels from proteome-wide samples because of the reduced complexity of tandem mass spectra relative to MS1 spectra. In addition, because of the isotope incorporation in the reporter and the residual components of the cross-linker that remain on released peptides, each fragmentation spectrum can offer multiple independent opportunities and, therefore, improved confidence for quantitative assessment of the cross-linker pair level. Finally, in addition to providing information on solvent accessibility of lysine sites, dead end iqPIR cross-linked products can provide protein abundance and/or lysine site modification level information all from a single in vivo cross-linking experiment.


Subject(s)
Cross-Linking Reagents/chemistry , Peptides/analysis , Proteome/analysis , Amino Acid Sequence , Bacillus subtilis/metabolism , Biosensing Techniques , Chromatography, High Pressure Liquid , HeLa Cells , Humans , Isotope Labeling , Lysine/chemistry , Models, Chemical , Molecular Conformation , Proteomics , Solvents/chemistry , Tandem Mass Spectrometry
15.
Proc Natl Acad Sci U S A ; 117(26): 15363-15373, 2020 06 30.
Article in English | MEDLINE | ID: mdl-32554501

ABSTRACT

Mitochondrial dysfunction underlies the etiology of a broad spectrum of diseases including heart disease, cancer, neurodegenerative diseases, and the general aging process. Therapeutics that restore healthy mitochondrial function hold promise for treatment of these conditions. The synthetic tetrapeptide, elamipretide (SS-31), improves mitochondrial function, but mechanistic details of its pharmacological effects are unknown. Reportedly, SS-31 primarily interacts with the phospholipid cardiolipin in the inner mitochondrial membrane. Here we utilize chemical cross-linking with mass spectrometry to identify protein interactors of SS-31 in mitochondria. The SS-31-interacting proteins, all known cardiolipin binders, fall into two groups, those involved in ATP production through the oxidative phosphorylation pathway and those involved in 2-oxoglutarate metabolic processes. Residues cross-linked with SS-31 reveal binding regions that in many cases, are proximal to cardiolipin-protein interacting regions. These results offer a glimpse of the protein interaction landscape of SS-31 and provide mechanistic insight relevant to SS-31 mitochondrial therapy.


Subject(s)
Mitochondria, Heart/drug effects , Mitochondria, Heart/metabolism , Oligopeptides/pharmacology , Aging , Animals , Male , Mice , Models, Chemical , Molecular Dynamics Simulation , Oligopeptides/metabolism , Protein Binding
16.
J Proteome Res ; 19(6): 2247-2263, 2020 06 05.
Article in English | MEDLINE | ID: mdl-32338516

ABSTRACT

Presymptomatic detection of citrus trees infected with Candidatus Liberibacter asiaticus (CLas), the bacterial pathogen associated with Huanglongbing (HLB; citrus greening disease), is critical to controlling the spread of the disease. To test whether infected citrus trees produce systemic signals that may be used for indirect disease detection, lemon (Citrus limon) plants were graft-inoculated with either CLas-infected or control (CLas-) budwood, and leaf samples were longitudinally collected over 46 weeks and analyzed for plant changes associated with CLas infection. RNA, protein, and metabolite samples extracted from leaves were analyzed using RNA-Seq, mass spectrometry, and 1H NMR spectroscopy, respectively. Significant differences in specific transcripts, proteins, and metabolites were observed between CLas-infected and control plants as early as 2 weeks post graft (wpg). The most dramatic differences between the transcriptome and proteome of CLas-infected and control plants were observed at 10 wpg, including coordinated increases in transcripts and proteins of citrus orthologs of known plant defense genes. This integrated approach to quantifying plant molecular changes in leaves of CLas-infected plants supports the development of diagnostic technology for presymptomatic or early disease detection as part of efforts to control the spread of HLB into uninfected citrus groves.


Subject(s)
Citrus , Hemiptera , Rhizobiaceae , Animals , Liberibacter , Plant Diseases/genetics , Proteomics , Rhizobiaceae/genetics , Transcriptome
17.
J Am Soc Mass Spectrom ; 31(2): 190-195, 2020 Feb 05.
Article in English | MEDLINE | ID: mdl-32031408

ABSTRACT

Molecular interactions between two different classes of ß-lactamase enzymes and outer membrane protein A (OmpA) were studied by in vivo chemical cross-linking of a multi-drug-resistant strain of Acinetobacter baumannii AB5075. Class A ß-lactamase blaGES-11 and Class D ß-lactamase Oxa23, responsible for hydrolysis of different types of ß-lactam antibiotics, were found to be cross-linked to similar lysine sites of the periplasmic domain of outer membrane protein OmpA, despite low sequence homology between the two enzymes. The findings from in vivo XL-MS suggest that the interacting surfaces between both ß-lactamase enzymes and OmpA are conserved during molecular evolution, and the OmpA C-terminus domain serves an important function of anchoring different types of ß-lactamase enzymes in the periplasmic space.


Subject(s)
Acinetobacter baumannii/metabolism , Bacterial Outer Membrane Proteins/metabolism , Bacterial Proteins/metabolism , beta-Lactamases/metabolism , Acinetobacter baumannii/chemistry , Amino Acid Sequence , Bacterial Outer Membrane Proteins/chemistry , Bacterial Proteins/chemistry , Conserved Sequence , Cross-Linking Reagents/chemistry , Mass Spectrometry , Models, Molecular , Protein Conformation , Protein Interaction Domains and Motifs , Protein Interaction Maps , beta-Lactamases/chemistry
18.
J Proteome Res ; 19(2): 719-732, 2020 02 07.
Article in English | MEDLINE | ID: mdl-31885275

ABSTRACT

"Candidatus Liberibacter asiaticus" (CLas) is the bacterium associated with the citrus disease Huanglongbing (HLB). Current CLas detection methods are unreliable during presymptomatic infection, and understanding CLas pathogenicity to help develop new detection techniques is challenging because CLas has yet to be isolated in pure culture. To understand how CLas affects citrus metabolism and whether infected plants produce systemic signals that can be used to develop improved detection techniques, leaves from Washington Navel orange (Citrus sinensis (L.) Osbeck) plants were graft-inoculated with CLas and longitudinally studied using transcriptomics (RNA sequencing), proteomics (liquid chromatography-tandem mass spectrometry), and metabolomics (proton nuclear magnetic resonance). Photosynthesis gene expression and protein levels were lower in infected plants compared to controls during late infection, and lower levels of photosynthesis proteins were identified as early as 8 weeks post-grafting. These changes coordinated with higher sugar concentrations, which have been shown to accumulate during HLB. Cell wall modification and degradation gene expression and proteins were higher in infected plants during late infection. Changes in gene expression and proteins related to plant defense were observed in infected plants as early as 8 weeks post-grafting. These results reveal coordinated changes in greenhouse navel leaves during CLas infection at the transcript, protein, and metabolite levels, which can inform of biomarkers of early infection.


Subject(s)
Citrus sinensis , Citrus , Hemiptera , Rhizobiaceae , Animals , Citrus sinensis/genetics , Liberibacter , Metabolomics , Plant Diseases/genetics , Proteomics , Rhizobiaceae/genetics , Transcriptome
19.
Cell Rep ; 29(8): 2371-2383.e5, 2019 11 19.
Article in English | MEDLINE | ID: mdl-31747606

ABSTRACT

Cell-cycle inhibitors, including paclitaxel, are among the most widely used and effective cancer therapies. However, several challenges limit the success of paclitaxel, including drug resistance and toxic side effects. Paclitaxel is thought to act primarily by stabilizing microtubules, locking cells in a mitotic state. However, the resulting cytotoxicity and tumor shrinkage rates observed cannot be fully explained by this mechanism alone. Here we apply quantitative chemical cross-linking with mass spectrometry analysis to paclitaxel-treated cells. Our results provide large-scale measurements of relative protein levels and, perhaps more importantly, changes to protein conformations and interactions that occur upon paclitaxel treatment. Drug concentration-dependent changes are revealed in known drug targets including tubulins, as well as many other proteins and protein complexes involved in apoptotic signaling and cellular homeostasis. As such, this study provides insight into systems-level changes to protein structures and interactions that occur with paclitaxel treatment.


Subject(s)
Antineoplastic Agents, Phytogenic/pharmacology , Paclitaxel/pharmacology , Apoptosis/drug effects , Cell Cycle/drug effects , Humans , Isotope Labeling , Mass Spectrometry , Microtubules/drug effects , Microtubules/metabolism
20.
J Proteome Res ; 18(8): 3077-3085, 2019 08 02.
Article in English | MEDLINE | ID: mdl-31267744

ABSTRACT

Chemical cross-linking and mass spectrometry is of growing use for establishment of distance constraints on protein conformations and interactions. Whereas intraprotein cross-links can arise from proteins in isolation, interprotein cross-links reflect proximity of two interacting proteins in the sample. Prediction of expected ratios of the number of interprotein to intraprotein cross-links is hindered by lacking comprehensive knowledge on the interactome network and global occupancy levels for all interacting complex subunits. Here we determine the theoretical number of possible inter- and intraprotein cross-links in available PDB structures of proteins bound in complexes to predict a maximum expected fraction of interprotein cross-links in large scale in vivo cross-linking studies. We show how the maximum fraction can guide interpretation of reported interprotein fractions with respect to the extent of sample protein binding, comparing whole cell and lysate cross-linked samples as an example. We also demonstrate how an observation of interprotein cross-link fractions greater than the maximum value can result from the presence of false positive cross-links which are predominantly interprotein, their number estimable from the observed surplus fraction of interprotein cross-links.


Subject(s)
Models, Molecular , Protein Conformation , Protein Interaction Maps/genetics , Proteins/genetics , Cross-Linking Reagents , Databases, Protein , Protein Binding/genetics , Protein Interaction Mapping/methods , Proteins/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...