Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Blood Adv ; 7(2): 236-245, 2023 01 24.
Article in English | MEDLINE | ID: mdl-36251745

ABSTRACT

Patients with multiple myeloma (MM) who are treated with lenalidomide rarely develop a secondary B-cell acute lymphoblastic leukemia (B-ALL). The clonal and biological relationship between these sequential malignancies is not yet clear. We identified 17 patients with MM treated with lenalidomide, who subsequently developed B-ALL. Patient samples were evaluated through sequencing, cytogenetics/fluorescence in situ hybridization (FISH), immunohistochemical (IHC) staining, and immunoglobulin heavy chain (IgH) clonality assessment. Samples were assessed for shared mutations and recurrently mutated genes. Through whole exome sequencing and cytogenetics/FISH analysis of 7 paired samples (MM vs matched B-ALL), no mutational overlap between samples was observed. Unique dominant IgH clonotypes between the tumors were observed in 5 paired MM/B-ALL samples. Across all 17 B-ALL samples, 14 (83%) had a TP53 variant detected. Three MM samples with sufficient sequencing depth (>500×) revealed rare cells (average of 0.6% variant allele frequency, or 1.2% of cells) with the same TP53 variant identified in the subsequent B-ALL sample. A lack of mutational overlap between MM and B-ALL samples shows that B-ALL developed as a second malignancy arising from a founding population of cells that likely represented unrelated clonal hematopoiesis caused by a TP53 mutation. The recurrent variants in TP53 in the B-ALL samples suggest a common path for malignant transformation that may be similar to that of TP53-mutant, treatment-related acute myeloid leukemia. The presence of rare cells containing TP53 variants in bone marrow at the initiation of lenalidomide treatment suggests that cellular populations containing TP53 variants expand in the presence of lenalidomide to increase the likelihood of B-ALL development.


Subject(s)
Burkitt Lymphoma , Lenalidomide , Multiple Myeloma , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma , Humans , Bone Marrow/pathology , Burkitt Lymphoma/pathology , Immunoglobulin Heavy Chains/genetics , In Situ Hybridization, Fluorescence , Lenalidomide/adverse effects , Lenalidomide/therapeutic use , Multiple Myeloma/drug therapy , Mutation , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/pathology
2.
PLoS One ; 16(11): e0255706, 2021.
Article in English | MEDLINE | ID: mdl-34780480

ABSTRACT

Kdm6a/Utx, a gene on the X chromosome, encodes a histone H3K27me3 demethylase that has an orthologue on the Y chromosome (Uty) (Zheng et al. 2018). We previously identified inactivating mutations of Kdm6a in approximately 50% of mouse acute promyelocytic leukemia samples; however, somatic mutations of KDM6A are more rare in human AML samples, ranging in frequency from 2-15% in different series of patients, where their role in pathogenesis is not yet clear. In this study, we show that female Kdm6aflox/flox mice (with allele inactivation initiated by Vav1-Cre in hematopoietic stem and progenitor cells (HSPCs) have a sex-specific phenotype that emerges with aging, with features resembling a myelodysplastic syndrome (MDS). Female Kdm6a-knockout (KO) mice have an age-dependent expansion of their HSPCs with aberrant self-renewal, but they did not differentiate normally into downstream progeny. These mice became mildly anemic and thrombocytopenic, but did not develop overt leukemia, or die from these cytopenias. ChIP-seq and ATAC-seq studies showed only minor changes in H3K27me3, H3K27ac, H3K4me, H3K4me3 and chromatin accessibility between Kdm6a-WT and Kdm6a-KO mice. Utilizing scRNA-seq, Kdm6a loss was linked to the transcriptional repression of genes that mediate hematopoietic cell fate determination. These data demonstrate that Kdm6a plays an important role in normal hematopoiesis, and that its inactivation may contribute to AML pathogenesis.


Subject(s)
Histone Demethylases/genetics , Myelodysplastic Syndromes/genetics , Age Factors , Animals , Chromatin , Female , Hematopoietic Stem Cells/metabolism , Histone Demethylases/metabolism , Male , Mice , Mice, Knockout , Myelodysplastic Syndromes/metabolism , Phenotype , Sex Factors
3.
Cell Rep ; 36(9): 109626, 2021 08 31.
Article in English | MEDLINE | ID: mdl-34469727

ABSTRACT

Somatic mutations in spliceosome genes are found in ∼50% of patients with myelodysplastic syndromes (MDS), a myeloid malignancy associated with low blood counts. Expression of the mutant splicing factor U2AF1(S34F) alters hematopoiesis and mRNA splicing in mice. Our understanding of the functionally relevant alternatively spliced target genes that cause hematopoietic phenotypes in vivo remains incomplete. Here, we demonstrate that reduced expression of H2afy1.1, an alternatively spliced isoform of the histone H2A variant gene H2afy, is responsible for reduced B cells in U2AF1(S34F) mice. Deletion of H2afy or expression of U2AF1(S34F) reduces expression of Ebf1 (early B cell factor 1), a key transcription factor for B cell development, and mechanistically, H2AFY is enriched at the EBF1 promoter. Induced expression of H2AFY1.1 in U2AF1(S34F) cells rescues reduced EBF1 expression and B cells numbers in vivo. Collectively, our data implicate alternative splicing of H2AFY as a contributor to lymphopenia induced by U2AF1(S34F) in mice and MDS.


Subject(s)
Alternative Splicing , B-Lymphocytes/metabolism , Histones/metabolism , Lymphopoiesis , Myelodysplastic Syndromes/metabolism , Splicing Factor U2AF/metabolism , Animals , B-Lymphocytes/immunology , Binding Sites , Case-Control Studies , HEK293 Cells , Histones/genetics , Humans , K562 Cells , Mice, 129 Strain , Mice, Inbred C57BL , Mice, Knockout , Mutation , Myelodysplastic Syndromes/genetics , Myelodysplastic Syndromes/immunology , Promoter Regions, Genetic , Signal Transduction , Splicing Factor U2AF/genetics , Trans-Activators/genetics , Trans-Activators/metabolism
4.
Ann Clin Transl Neurol ; 6(4): 723-738, 2019 Apr.
Article in English | MEDLINE | ID: mdl-31019997

ABSTRACT

OBJECTIVE: Microglia play a pivotal role in the initiation and progression of Alzheimer's disease (AD). We here tested the therapeutic hypothesis that the Ca2+-activated potassium channel KCa3.1 constitutes a potential target for treating AD by reducing neuroinflammation. METHODS: To determine if KCa3.1 is relevant to AD, we tested if treating cultured microglia or hippocampal slices with Aß oligomer (AßO) activated KCa3.1 in microglia, and if microglial KCa3.1 was upregulated in 5xFAD mice and in human AD brains. The expression/activity of KCa3.1 was examined by qPCR, Western blotting, immunohistochemistry, and whole-cell patch-clamp. To investigate the role of KCa3.1 in AD pathology, we resynthesized senicapoc, a clinically tested KCa3.1 blocker, and determined its pharmacokinetic properties and its effect on microglial activation, Aß deposition and hippocampal long-term potentiation (hLTP) in 5xFAD mice. RESULTS: We found markedly enhanced microglial KCa3.1 expression/activity in brains of both 5xFAD mice and AD patients. In hippocampal slices, microglial KCa3.1 expression/activity was increased by AßO treatment, and its inhibition diminished the proinflammatory and hLTP-impairing activities of AßO. Senicapoc exhibited excellent brain penetrance and oral availability, and in 5xFAD mice, reduced neuroinflammation, decreased cerebral amyloid load, and enhanced hippocampal neuronal plasticity. INTERPRETATION: Our results prompt us to propose repurposing senicapoc for AD clinical trials, as senicapoc has excellent pharmacological properties and was safe and well-tolerated in a prior phase-3 clinical trial for sickle cell anemia. Such repurposing has the potential to expedite the urgently needed new drug discovery for AD.


Subject(s)
Acetamides/pharmacology , Alzheimer Disease/drug therapy , Amyloid beta-Peptides/pharmacology , Intermediate-Conductance Calcium-Activated Potassium Channels/antagonists & inhibitors , Trityl Compounds/pharmacology , Amyloid beta-Peptides/metabolism , Animals , Brain/drug effects , Brain/metabolism , Drug Repositioning/methods , Humans , Mice, Transgenic , Microglia/drug effects
5.
DNA Repair (Amst) ; 76: 40-49, 2019 04.
Article in English | MEDLINE | ID: mdl-30818168

ABSTRACT

DNA polymerases influence genome stability through their involvement in DNA replication, response to DNA damage, and DNA repair processes. Saccharomyces cerevisiae possess four non-essential DNA polymerases, Pol λ, Pol η, Pol ζ, and Rev1, which have varying roles in genome stability. In order to assess the contribution of the non-essential DNA polymerases in genome stability, we analyzed the pol4Δ rev1Δ rev3Δ rad30Δ quadruple mutant in microhomology mediated repair, due to recent studies linking some of these DNA polymerases to this repair pathway. Our results suggest that the length and quality of microhomology influence both the overall efficiency of repair and the involvement of DNA polymerases. Furthermore, the non-essential DNA polymerases demonstrate overlapping and redundant functions when repairing double-strand breaks using short microhomologies containing mismatches. Then, we examined genome-wide mutation accumulation in the pol4Δ rev1Δ rev3Δ rad30Δ quadruple mutant compared to wild type cells. We found a significant decrease in the overall rate of mutation accumulation in the quadruple mutant cells compared to wildtype, but an increase in frameshift mutations and a shift towards transversion base-substitution with a preference for G:C to T:A or C:G. Thus, the non-essential DNA polymerases have an impact on the nature of the mutational spectrum. The sequence and functional homology shared between human and S. cerevisiae non-essential DNA polymerases suggest these DNA polymerases may have a similar role in human cells.


Subject(s)
DNA-Directed DNA Polymerase/metabolism , Genomic Instability , Saccharomyces cerevisiae/enzymology , Saccharomyces cerevisiae/genetics , DNA Repair , DNA-Directed DNA Polymerase/genetics , Mutation
SELECTION OF CITATIONS
SEARCH DETAIL
...