Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Phys Chem B ; 117(6): 1502-15, 2013 Feb 14.
Article in English | MEDLINE | ID: mdl-23088165

ABSTRACT

This Review summarizes research progress employing electrophoretic deposition (EPD) to fabricate graphene and graphene-based nanostructures for a wide range of applications, including energy storage materials, field emission devices, supports for fuel cells, dye-sensitized solar cells, supercapacitors and sensors, among others. These carbonaceous nanomaterials can be dispersed in organic solvents, or more commonly in water, using a variety of techniques compatible with EPD. Most deposits are produced under constant voltage conditions with deposition time also playing an important role in determining the morphology of the resulting graphene structures. In addition to simple planar substrates, it has been shown that uniform graphene-based layers can be deposited on three-dimensional, porous, and even flexible substrates. In general, electrophoretically deposited graphene layers show excellent properties, e.g., high electrical conductivity, large surface area, good thermal stability, high optical transparency, and robust mechanical strength. EPD also enables the fabrication of functional composite materials, e.g., graphene combined with metallic nanoparticles, with other carbonaceous materials (e.g., carbon nanotubes) or polymers, leading to novel nanomaterials with enhanced optical and electrical properties. In summary, the analysis of the available literature reveals that EPD is a simple and convenient processing method for graphene and graphene-based materials, which is easy to apply and versatile. EPD has, therefore, a promising future for applications in the field of advanced nanomaterials, which depend on the reliable manipulation of graphene and graphene-containing systems.


Subject(s)
Graphite/chemistry , Nanostructures/chemistry , Biosensing Techniques , Electric Conductivity , Electrochemical Techniques , Electrophoresis , Polymers/chemistry , Solar Energy
2.
J Colloid Interface Sci ; 392: 167-171, 2013 Feb 15.
Article in English | MEDLINE | ID: mdl-23218240

ABSTRACT

Alternating current electrophoretic deposition (AC-EPD) of polyacrylic acid (PAA)-titanium oxide (TiO(2)) nanoparticle composites on stainless steel electrodes was investigated in basic aqueous solution. AC square wave with duty cycle of 80% was applied at a frequency of 1 kHz. FTIR-ATR spectra showed that both AC and direct current (DC) EPD successfully deposited PAA-TiO(2) composites. The deposition rate using AC-EPD was lower than that obtained in direct current DC-EPD. However, the microstructure and surface morphology of the deposited composite coatings were different depending on the type of electric field applied. AC-EPD applied for not more than 5 min led to smooth films without bubble formation, while DC-EPD for 1 min or more showed deposits with microstructural defects possibly as result of water electrolysis. AC-EPD was thus for the first time demonstrated to be a suitable technique to deposit organic-inorganic composite coatings from aqueous suspensions, showing that applying a square wave and frequency of 1 kHz leads to uniform PAA-TiO(2) composite coatings on conductive materials.


Subject(s)
Acrylic Resins/chemistry , Titanium/chemistry , Electrodes , Electrophoresis , Nanoparticles/chemistry , Solutions , Stainless Steel/chemistry , Water/chemistry
3.
J Colloid Interface Sci ; 375(1): 102-5, 2012 Jun 01.
Article in English | MEDLINE | ID: mdl-22429587

ABSTRACT

TiO(2)-nanostructured coatings from aqueous suspensions have been successfully prepared by the application of alternating current (AC) instead of direct current (DC) during electrophoretic deposition (EPD). No organic additives in suspension were required for successful EPD. The quality of the AC-EPD TiO(2) coatings in terms of homogeneity and extent of microcracking, upon drying, observed by SEM, was superior to that of DC-EPD coatings made from the same type of suspensions. The main difference between AC- and DC-EPD was the suppression of bubble formation. The absence of water electrolysis at the electrodes can be explained by the particular distribution of the electric field during AC mode, which prevents the nucleation of bubbles. The preparation of TiO(2) coatings from aqueous suspension and without the aid of organic stabilizers opens the possibility for co-deposition of sensitive materials such as biomolecules and even cells for biomedical applications, given the high biocompatibility of TiO(2). The deposition of TiO(2) coatings from aqueous suspensions is also attractive from environmental and economical points of view.


Subject(s)
Nanoparticles/chemistry , Suspensions/chemistry , Titanium/chemistry , Water/chemistry , Electricity , Electrodes , Electrophoresis/methods , Materials Testing , Microscopy, Electron, Scanning , Stainless Steel/chemistry , Surface Properties
SELECTION OF CITATIONS
SEARCH DETAIL
...