Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
Add more filters










Publication year range
1.
J Neurosci ; 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38830765

ABSTRACT

Fragile X syndrome (FXS) is a genetic cause of intellectual disability and autism spectrum disorder (ASD), associated with social deficits. The mesocorticolimbic system, which includes the prefrontal cortex (PFC), basolateral amygdala (BLA), and nucleus accumbens core (NAcC), is essential for regulating socio-emotional behaviors. We employed optogenetics to compare the functional properties of the BLA→NAcC, PFC→NAcC, and reciprocal PFC↔BLA pathways in Fmr1-/y::Drd1a-tdTomato male mice. In FXS mice, the PFC↔BLA reciprocal pathway was unaffected, while significant synaptic modifications occurred in the BLA/PFC→NAcC pathways. We observed distinct changes in D1 striatal projection neurons (SPNs) and separate modifications in D2 SPNs. In FXS mice, the BLA/PFC→NAcC-D2 SPNs pathways demonstrated heightened synaptic strength. Focusing on the BLA→NAcC pathway, linked to autistic symptoms, we found increased AMPAR and NMDAR currents, and elevated spine density in D2 SPNs. Conversely, the amplified firing probability of BLA→NAcC-D1 SPNs was not accompanied by increased synaptic strength, AMPAR and NMDAR currents, or spine density. These pathway-specific alterations resulted in an overall enhancement of excitatory-to-spike coupling, a physiologically relevant index of how efficiently excitatory inputs drive neuronal firing, in both BLA→NAcC-D1 and BLA→NAcC-D2 pathways. Finally, the absence of FMRP led to impaired long-term depression specifically in BLA→D1 SPNs. These distinct alterations in synaptic transmission and plasticity within circuits targeting the NAcC highlight the potential role of postsynaptic mechanisms in selected SPNs in the observed circuit-level changes. This research underscores the heightened vulnerability of the NAcC in the context of FMRP deficiency, emphasizing its pivotal role in the pathophysiology of FXS.Significance Statement Fragile X Syndrome is a neurodevelopmental disorder characterized by significant emotional dysregulation and social challenges. The mesocorticolimbic system is a key socioemotional regulator. Nevertheless, its functioning in this condition is still poorly understood. Our study investigates connections between the basolateral amygdala (BLA), prefrontal cortex (PFC), and nucleus accumbens core (NAcC). We observed that while the PFC↔BLA reciprocal connections remained unaffected, their projections onto the NAcC showed target cell-specific changes. Specifically, D2 SPNs exhibited increased synaptic transmission and spine density, whereas D1 SPNs showed heightened firing probability and impaired long-term depression, alongside enhanced neuronal firing efficiency in both SPN types. These findings emphasize the NAcC's crucial role as a neurobiological substrate in the pathophysiology of Fragile X Syndrome.

2.
Biol Sex Differ ; 15(1): 29, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38561860

ABSTRACT

BACKGROUND: The insular cortex (IC) plays a pivotal role in processing interoceptive and emotional information, offering insights into sex differences in behavior and cognition. The IC comprises two distinct subregions: the anterior insular cortex (aIC), that processes emotional and social signals, and the posterior insular cortex (pIC), specialized in interoception and perception of pain. Pyramidal projection neurons within the IC integrate multimodal sensory inputs, influencing behavior and cognition. Despite previous research focusing on neuronal connectivity and transcriptomics, there has been a gap in understanding pyramidal neurons characteristics across subregions and between sexes. METHODS: Adult male and female C57Bl/6J mice were sacrificed and tissue containing the IC was collected for ex vivo slice electrophysiology recordings that examined baseline sex differences in synaptic plasticity and transmission within aIC and pIC subregions. RESULTS: Clear differences emerged between aIC and pIC neurons in both males and females: aIC neurons exhibited distinctive features such as larger size, increased hyperpolarization, and a higher rheobase compared to their pIC counterparts. Furthermore, we observed variations in neuronal excitability linked to sex, with male pIC neurons displaying a greater level of excitability than their female counterparts. We also identified region-specific differences in excitatory and inhibitory synaptic activity and the balance between excitation and inhibition in both male and female mice. Adult females demonstrated greater synaptic strength and maximum response in the aIC compared to the pIC. Lastly, synaptic long-term potentiation occurred in both subregions in males but was specific to the aIC in females. CONCLUSIONS: We conclude that there are sex differences in synaptic plasticity and excitatory transmission in IC subregions, and that distinct properties of IC pyramidal neurons between sexes could contribute to differences in behavior and cognition between males and females.


This study investigates differences in the insular cortex (IC), a region of the brain responsible for emotions and sensory perceptions, between male and female mice. The IC has two parts: the front (aIC) deals with emotions and social cues, while the back (pIC) is focused on sensing pain and bodily sensations. We examined specific brain cells called pyramidal neurons in both aIC and pIC and discovered noteworthy distinctions between these neurons in adult male and female mice. Firstly, aIC neurons were larger and had unique electrical properties in both male and female mice. Males had more excitable pIC neurons compared to females, indicating that their neurons were more likely to transmit signals. We also explored how these neurons communicate with each other through connections known as synapses. In adult females, the aIC had stronger connections than the pIC. Finally, we observed that specific types of basic synaptic learning occurred exclusively in males in the aIC. These findings underscore significant disparities in the IC between males and females, offering valuable insights into the potential reasons behind variations in behaviors and emotions between sexes.


Subject(s)
Cerebral Cortex , Insular Cortex , Mice , Animals , Female , Male , Cerebral Cortex/physiology , Neurons
3.
Biol Sex Differ ; 15(1): 18, 2024 Feb 21.
Article in English | MEDLINE | ID: mdl-38383408

ABSTRACT

BACKGROUND: Pup-dam ultrasonic vocalizations (USVs) are essential to cognitive and socio-emotional development. In autism and Fragile X Syndrome (FXS), disruptions in pup-dam USV communication hint at a possible connection between abnormal early developmental USV communication and the later emergence of communication and social deficits. METHODS: Here, we gathered USVs from PND 10 FXS pups during a short period of separation from their mothers, encompassing animals of all possible genotypes and both sexes (i.e., Fmr1-/y vs. Fmr1+/y males and Fmr1+/+, +/-, and -/- females). This allowed comparing the influence of sex and gene dosage on pups' communication capabilities. Leveraging DeepSqueak and analyzing vocal patterns, intricate vocal behaviors such as call structure, duration, frequency modulation, and temporal patterns were examined. Furthermore, homing behavior was assessed as a sensitive indicator of early cognitive development and social discrimination. This behavior relies on the use of olfactory and thermal cues to navigate and search for the maternal or nest odor in the surrounding space. RESULTS: The results show that FMRP-deficient pups of both sexes display an increased inclination to vocalize when separated from their mothers, and this behavior is accompanied by significant sex-specific changes in the main features of their USVs as well as in body weight. Analysis of the vocal repertoire and syntactic usage revealed that Fmr1 gene silencing primarily alters the USVs' qualitative composition in males. Moreover, sex-specific effects of Fmr1 silencing on locomotor activity and homing behavior were observed. FMRP deficiency in females increased activity, reduced nest-reaching time, and extended nest time. In males, it prolonged nest-reaching time and reduced nest time without affecting locomotion. CONCLUSIONS: These findings highlight the interplay between Fmr1 gene dosage and sex in influencing communicative and cognitive skills during infancy.


In this study, we investigated ultrasonic vocalizations (USVs) and homing behavior in a mouse model of Fragile X Syndrome (FXS), a leading genetic cause of autism spectrum disorder (ASD) caused by a mutation of the X-chromosome linked Fmr1 gene. Disruptions in pup-dam USV communication and cognitive skills may be linked to the later emergence of communication and social deficits in ASD. USVs were collected from 10-day-old FXS pups of all possible genotypes and both sexes during a short period of separation from their mothers. We utilized DeepSqueak, an advanced deep learning system, to examine vocal patterns and intricate vocal behaviors, including call structure, duration, frequency modulation, and their temporal patterns. Homing, a sensitive indicator of early cognitive development and social discrimination was assessed at P13. The results showed that FXS pups of both sexes displayed an increased inclination to vocalize when separated from their mothers. Examination of the vocal repertoire and its syntactic usage revealed that the silencing of the Fmr1 gene primarily alters the qualitative composition of ultrasonic communication in males. The sex-specific changes observed in USVs were accompanied by modifications in body weight. Regarding homing behavior, the deficiency of FMRP led to opposite deficits in activity, time to reach the nest, and nesting time depending on sex. Taken together, these findings highlight the interplay between Fmr1 gene dosage and sex in shaping communication and cognition during infancy.


Subject(s)
Fragile X Syndrome , Animals , Mice , Female , Male , Fragile X Syndrome/genetics , Fragile X Syndrome/psychology , Vocalization, Animal , Mice, Knockout , Fragile X Mental Retardation Protein/genetics , Cognition , Gene Dosage , Disease Models, Animal
4.
Res Sq ; 2023 Oct 28.
Article in English | MEDLINE | ID: mdl-37961241

ABSTRACT

Background: The insular cortex (IC) plays a pivotal role in processing interoceptive and emotional Information, offering insights into sex differences in behavior and cognition. The IC comprises two distinct subregions: the anterior insular cortex (alC), that processes emotional and social signals, and the posterior insular cortex (pIC), specialized in interoception and perception of pain. Pyramidal projection neurons within the IC integrate multimodal sensory inputs, influencing behavior and cognition. Despite previous research focusing on neuronal connectivity and transcriptomics, there has been a gap in understanding pyramidal neurons characteristics across subregions and between sexes. Methods: Adult male and female C57BI/6J mice were sacrificed and tissue containing the IC was collected for ex vivo slice electrophysiology recordings that examined baseline sex differences in synaptic plasticity and transmission within alC and pIC subregions. Results: Clear differences emerged between alC and pIC neurons In both males and females: alC neurons exhibited distinctive features such as larger size, increased hyperpolarizatlon, and a higher rheobase compared to their pIC counterparts. Furthermore, we observed variations in neuronal excitability linked to sex, with male pIC neurons displaying a greater level of excitability than their female counterparts. We also identified region-specific differences in excitatory and inhibitory synaptic activity and the balance between excitation and inhibition in both male and female mice. Adult females demonstrated greater synaptic strength and maximum response in the alC compared to the pIC. Lastly, synaptic long-term potentiation occurred in both subregions in males but was specific to the alC in females. Conclusions: We conclude that there are sex differences in synaptic plasticity and excitatory transmission in IC subregions, and that distinct properties of IC pyramidal neurons between sexes could contribute to differences in behavior and cognition between males and females.

5.
bioRxiv ; 2023 Oct 20.
Article in English | MEDLINE | ID: mdl-37905125

ABSTRACT

Background: The insular cortex (IC) plays a pivotal role in processing interoceptive and emotional information, offering insights into sex differences in behavior and cognition. The IC comprises two distinct subregions: the anterior insular cortex (aIC), that processes emotional and social signals, and the posterior insular cortex (pIC), specialized in interoception and perception of pain. Pyramidal projection neurons within the IC integrate multimodal sensory inputs, influencing behavior and cognition. Despite previous research focusing on neuronal connectivity and transcriptomics, there has been a gap in understanding pyramidal neurons characteristics across subregions and between sexes. Methods: Adult male and female C57Bl/6J mice were sacrificed and tissue containing the IC was collected for ex vivo slice electrophysiology recordings that examined baseline sex differences in synaptic plasticity and transmission within aIC and pIC subregions. Results: Clear differences emerged between aIC and pIC neurons in both males and females: aIC neurons exhibited distinctive features such as larger size, increased hyperpolarization, and a higher rheobase compared to their pIC counterparts. Furthermore, we observed variations in neuronal excitability linked to sex, with male pIC neurons displaying a greater level of excitability than their female counterparts. We also identified region-specific differences in excitatory and inhibitory synaptic activity and the balance between excitation and inhibition in both male and female mice. Adult females demonstrated greater synaptic strength and maximum response in the aIC compared to the pIC. Lastly, synaptic long-term potentiation occurred in both subregions in males but was specific to the aIC in females. Conclusions: We conclude that there are sex differences in synaptic plasticity and excitatory transmission in IC subregions, and that distinct properties of IC pyramidal neurons between sexes could contribute to differences in behavior and cognition between males and females. Highlights: - Distinctions specific to sex are present within subregions of the insular cortex (IC) in C57Bl/6J mice.- Pyramidal neurons in the anterior IC (aIC) exhibited larger size and distinct electrical properties. Adult females exhibited stronger synaptic responses in the aIC.- Conversely, male posterior insular cortex neurons displayed increased excitability.- Synaptic long-term potentiation was observed in both subregions in males, but it was exclusive to the aIC in females.- Sex-based variations in various aspects of excitatory transmission within IC subregions could contribute to differences in behavior and cognition between males and females. Plain language summary: This study investigates differences in the insular cortex (IC), a region of the brain responsible for emotions and sensory perceptions, between male and female mice. The IC has two parts: the front (aIC) deals with emotions and social cues, while the back (pIC) is focused on sensing pain and bodily sensations. We examined specific brain cells called pyramidal neurons in both aIC and pIC and discovered noteworthy distinctions between these neurons in adult male and female mice. Firstly, aIC neurons were larger and had unique electrical properties in both male and female mice. Males had more excitable pIC neurons compared to females, indicating that their neurons were more likely to transmit signals. We also explored how these neurons communicate with each other through connections known as synapses. In adult females, the aIC had stronger connections than the pIC. Finally, we observed that specific types of basic synaptic learning occurred exclusively in males in the aIC.These findings underscore significant disparities in the IC between males and females, offering valuable insights into the potential reasons behind variations in behaviors and emotions between sexes.

6.
Front Cell Neurosci ; 17: 1146647, 2023.
Article in English | MEDLINE | ID: mdl-37323585

ABSTRACT

Introduction: Fragile X syndrome (FXS), resulting from a mutation in the Fmr1 gene, is the most common monogenic cause of autism and inherited intellectual disability. Fmr1 encodes the Fragile X Messenger Ribonucleoprotein (FMRP), and its absence leads to cognitive, emotional, and social deficits compatible with the nucleus accumbens (NAc) dysfunction. This structure is pivotal in social behavior control, consisting mainly of spiny projection neurons (SPNs), distinguished by dopamine D1 or D2 receptor expression, connectivity, and associated behavioral functions. This study aims to examine how FMRP absence differentially affects SPN cellular properties, which is crucial for categorizing FXS cellular endophenotypes. Methods: We utilized a novel Fmr1-/y::Drd1a-tdTomato mouse model, which allows in-situ identification of SPN subtypes in FXS mice. Using RNA-sequencing, RNAScope and ex-vivo patch-clamp in adult male mice NAc, we comprehensively compared the intrinsic passive and active properties of SPN subtypes. Results: Fmr1 transcripts and their gene product, FMRP, were found in both SPNs subtypes, indicating potential cell-specific functions for Fmr1. The study found that the distinguishing membrane properties and action potential kinetics typically separating D1- from D2-SPNs in wild-type mice were either reversed or abolished in Fmr1-/y::Drd1a-tdTomato mice. Interestingly, multivariate analysis highlighted the compound effects of Fmr1 ablation by disclosing how the phenotypic traits distinguishing each cell type in wild-type mice were altered in FXS. Discussion: Our results suggest that the absence of FMRP disrupts the standard dichotomy characterizing NAc D1- and D2-SPNs, resulting in a homogenous phenotype. This shift in cellular properties could potentially underpin select aspects of the pathology observed in FXS. Therefore, understanding the nuanced effects of FMRP absence on SPN subtypes can offer valuable insights into the pathophysiology of FXS, opening avenues for potential therapeutic strategies.

7.
Cannabis Cannabinoid Res ; 8(5): 749-767, 2023 10.
Article in English | MEDLINE | ID: mdl-37015060

ABSTRACT

Introduction: How sex influences prefrontal cortexes (PFCs) synaptic development through adolescence remains unclear. Materials and Methods: In this study we describe sex-specific cellular and synaptic trajectories in the rat PFC from adolescence to adulthood. Results: The excitability of PFC layer 5 pyramidal neurons was lower in adult females compared with other developmental stages. The developmental course of endocannabinoid-mediated long-term depression (eCB-LTD) was sexually dimorphic, unlike long-term potentiation or mGluR3-LTD. eCB-LTD was expressed in juvenile females but appeared only at puberty in males. Endovanilloid TRPV1R or eCB receptors were engaged during LTD in a sequential and sexually dimorphic manner. Gene expression of the eCB/vanilloid systems was sequential and sex specific. LTD-incompetent juvenile males had elevated expression levels of the CB1R-interacting inhibitory protein cannabinoid receptor interacting protein 1a and of the 2-arachidonoylglycerol-degrading enzyme ABHD6. Pharmacological inhibition of ABHD6 or MAGL enabled LTD in young males, whereas inhibition of anandamide degradation was ineffective. Conclusions: These results reveal sex differences in the maturational trajectories of the rat PFC.


Subject(s)
Endocannabinoids , Sexual Maturation , Rats , Female , Animals , Male , Endocannabinoids/metabolism , Neuronal Plasticity/genetics , Long-Term Potentiation , Gene Expression
8.
Transl Psychiatry ; 12(1): 501, 2022 12 05.
Article in English | MEDLINE | ID: mdl-36470874

ABSTRACT

Cannabidiol (CBD), one of the main components of cannabis, is generally considered safe. CBD crosses the placenta and its use during pregnancy is steadily increasing, the impact of gestational CBD's effects on prenatal life and neurodevelopment are poorly understood. Here, we combined behavioral approaches and deep learning analysis to assess the sex-dependent neonatal behavior of CBD exposed progeny. Gestating C57BL6/J dams were exposed daily with vehicle or CBD (3 mg/Kg, s.c.), from gestational day 5 to 18. Body weight, pup ultrasound vocalizations (USVs, PND 10) and homing behavior (PND 13) were quantified in the progeny. Thus, male (but not female) pups from CBD-treated dams gained more weight than sham. There were sex-dependent differences in the coarse characteristics of ultrasonic vocalizations. Prenatally-CBD exposed male pups emitted shorter calls, whereas CBD females made more high frequency calls when compared with their control counterparts. There were significant qualitative changes in the syllabic USV repertoire reflected in call typologies and communication patterns. Finally, the homing behavior test showed that CBD-exposed females presented a greater vulnerability to gestational CBD than males. Only CBD-exposed female pups showed reduced motor and discriminatory abilities. Together the results suggest a sexual divergence in the consequences of in utero CBD exposure on neonates at early developmental ages, which may be predictive of adult psychopathology. Given the extent of cannabis and CBD use worldwide, these findings challenge the idea that CBD is a universally safe compound and reveal the need for additional studies on the effect of perinatal CBD exposure.


Subject(s)
Cannabidiol , Pregnancy , Animals , Male , Mice , Female , Infant, Newborn , Humans , Cannabidiol/pharmacology , Vocalization, Animal , Mice, Inbred C57BL
9.
iScience ; 25(2): 103815, 2022 Feb 18.
Article in English | MEDLINE | ID: mdl-35198880

ABSTRACT

In rodents and humans, the basolateral amygdala (BLA), essential for emotional behaviors, is profoundly reorganized during adolescence. We compared in both sexes the morphology, neuronal, and synaptic properties of BLA neurons in rats at puberty and adulthood. BLA neurons were more excitable in males than in females at adulthood. At pubescence, male action potentials were smaller and shorter than females' while fast afterhyperpolarizations were larger in males. During postnatal maturation, spine length increased and decreased in females and males, respectively, while there was a reduction in spine head size in females. Excitatory synaptic properties, estimated from stimuli-response relationships, spontaneous post-synaptic currents, and AMPA/NMDA ratio also displayed sex-specific maturational differences. Finally, the developmental courses of long-term potentiation and depression were sexually dimorphic. These data reveal divergent maturational trajectories in the BLA of male and female rats and suggest sex-specific substrates to the BLA linked behaviors at adolescence and adulthood.

10.
Sci Rep ; 6: 35504, 2016 10 21.
Article in English | MEDLINE | ID: mdl-27765946

ABSTRACT

The postnatal maturation of the prefrontal cortex (PFC) represents a period of increased vulnerability to risk factors and emergence of neuropsychiatric disorders. To disambiguate the pathophysiological mechanisms contributing to these disorders, we revisited the endophenotype approach from a developmental viewpoint. The extracellular matrix protein reelin which contributes to cellular and network plasticity, is a risk factor for several psychiatric diseases. We mapped the aggregate effect of the RELN risk allele on postnatal development of PFC functions by cross-sectional synaptic and behavioral analysis of reelin-haploinsufficient mice. Multivariate analysis of bootstrapped datasets revealed subgroups of phenotypic traits specific to each maturational epoch. The preeminence of synaptic AMPA/NMDA receptor content to pre-weaning and juvenile endophenotypes shifts to long-term potentiation and memory renewal during adolescence followed by NMDA-GluN2B synaptic content in adulthood. Strikingly, multivariate analysis shows that pharmacological rehabilitation of reelin haploinsufficient dysfunctions is mediated through induction of new endophenotypes rather than reversion to wild-type traits. By delineating previously unknown developmental endophenotypic sequences, we conceived a promising general strategy to disambiguate the molecular underpinnings of complex psychiatric disorders and for the rational design of pharmacotherapies in these disorders.


Subject(s)
Alleles , Behavior, Animal , Cell Adhesion Molecules, Neuronal , Extracellular Matrix Proteins , Mental Disorders , Nerve Tissue Proteins , Prefrontal Cortex , Serine Endopeptidases , Synapses , Animals , Cell Adhesion Molecules, Neuronal/genetics , Cell Adhesion Molecules, Neuronal/metabolism , Extracellular Matrix Proteins/genetics , Extracellular Matrix Proteins/metabolism , Mental Disorders/genetics , Mental Disorders/metabolism , Mental Disorders/pathology , Mental Disorders/physiopathology , Mice , Mice, Mutant Strains , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/metabolism , Prefrontal Cortex/growth & development , Prefrontal Cortex/metabolism , Prefrontal Cortex/pathology , Prefrontal Cortex/physiopathology , Receptors, N-Methyl-D-Aspartate/genetics , Receptors, N-Methyl-D-Aspartate/metabolism , Reelin Protein , Serine Endopeptidases/genetics , Serine Endopeptidases/metabolism , Synapses/genetics , Synapses/metabolism , Synapses/pathology
11.
Front Cell Neurosci ; 10: 308, 2016.
Article in English | MEDLINE | ID: mdl-28127276

ABSTRACT

The reelin gene is a strong candidate in the etiology of several psychiatric disorders such as schizophrenia, major depression, bipolar disorders, and autism spectrum disorders. Most of these diseases are accompanied by cognitive and executive-function deficits associated with prefrontal dysfunctions. Mammalian prefrontal cortex (PFC) development is characterized by a protracted postnatal maturation constituting a period of enhanced vulnerability to psychiatric insults. The identification of the molecular components underlying this prolonged postnatal development is necessary to understand the synaptic properties of defective circuits participating in these psychiatric disorders. We have recently shown that reelin plays a key role in the maturation of glutamatergic functions in the postnatal PFC, but no data are available regarding the GABAergic circuits. Here, we undertook a cross-sectional analysis of GABAergic function in deep layer pyramidal neurons of the medial PFC of wild-type and haploinsufficient heterozygous reeler mice. Using electrophysiological approaches, we showed that decreased reelin levels impair the maturation of GABAergic synaptic transmission without affecting the inhibitory nature of GABA. This phenotype consequently impacted the developmental sequence of the synaptic excitation/inhibition (E/I) balance. These data indicate that reelin is necessary for the correct maturation and refinement of GABAergic synaptic circuits in the postnatal PFC and therefore provide a mechanism for altered E/I balance of prefrontal circuits associated with psychiatric disorders.

12.
J Neurosci ; 34(4): 1138-47, 2014 Jan 22.
Article in English | MEDLINE | ID: mdl-24453307

ABSTRACT

The gene Dyrk1a is the mammalian ortholog of Drosophila minibrain. Dyrk1a localizes in the Down syndrome (DS) critical region of chromosome 21q22.2 and is a major candidate for the behavioral and neuronal abnormalities associated with DS. PFC malfunctions are a common denominator in several neuropsychiatric diseases, including DS, but the contribution of DYRK1A in PFC dysfunctions, in particular the synaptic basis for impairments of executive functions reported in DS patients, remains obscure. We quantified synaptic plasticity, biochemical synaptic markers, and dendritic morphology of deep layer pyramidal PFC neurons in adult mBACtgDyrk1a transgenic mice that overexpress Dyrk1a under the control of its own regulatory sequences. We found that overexpression of Dyrk1a largely increased the number of spines on oblique dendrites of pyramidal neurons, as evidenced by augmented spine density, higher PSD95 protein levels, and larger miniature EPSCs. The dendritic alterations were associated with anomalous NMDAR-mediated long-term potentiation and accompanied by a marked reduction in the pCaMKII/CaMKII ratio in mBACtgDyrk1a mice. Retrograde endocannabinoid-mediated long-term depression (eCB-LTD) was ablated in mBACtgDyrk1a mice. Administration of green tea extracts containing epigallocatechin 3-gallate, a potent DYRK1A inhibitor, to adult mBACtgDyrk1a mice normalized long-term potentiation and spine anomalies but not eCB-LTD. However, inhibition of the eCB deactivating enzyme monoacylglycerol lipase normalized eCB-LTD in mBACtgDyrk1a mice. These data shed light on previously undisclosed participation of DYRK1A in adult PFC dendritic structures and synaptic plasticity. Furthermore, they suggest its involvement in DS-related endophenotypes and identify new potential therapeutic strategies.


Subject(s)
Down Syndrome/genetics , Neuronal Plasticity/genetics , Prefrontal Cortex/physiopathology , Protein Serine-Threonine Kinases/genetics , Protein-Tyrosine Kinases/genetics , Pyramidal Cells/physiopathology , Animals , Dendritic Spines/metabolism , Dendritic Spines/pathology , Disease Models, Animal , Down Syndrome/metabolism , Down Syndrome/physiopathology , Male , Mice , Mice, Transgenic , Patch-Clamp Techniques , Prefrontal Cortex/pathology , Pyramidal Cells/pathology , Dyrk Kinases
13.
J Neurosci ; 31(46): 16591-6, 2011 Nov 16.
Article in English | MEDLINE | ID: mdl-22090486

ABSTRACT

The endocannabinoid (eCB) system and the cannabinoid CB1 receptor (CB1R) play key roles in the modulation of brain functions. Although actions of eCBs and CB1Rs are well described at the synaptic level, little is known of their modulation of neural activity at the network level. Using microelectrode arrays, we have examined the role of CB1R activation in the modulation of the electrical activity of rat and mice cortical neural networks in vitro. We find that exogenous activation of CB1Rs expressed on glutamatergic neurons decreases the spontaneous activity of cortical neural networks. Moreover, we observe that the net effect of the CB1R antagonist AM251 inversely correlates with the initial level of activity in the network: blocking CB1Rs increases network activity when basal network activity is low, whereas it depresses spontaneous activity when its initial level is high. Our results reveal a complex role of CB1Rs in shaping spontaneous network activity, and suggest that the outcome of endogenous neuromodulation on network function might be state dependent.


Subject(s)
Brain/cytology , Cannabinoid Receptor Modulators/metabolism , Endocannabinoids , Nerve Net/physiology , Neurons/physiology , 4-Aminopyridine/pharmacology , Action Potentials/drug effects , Action Potentials/genetics , Animals , Animals, Newborn , Benzothiadiazines/pharmacology , Cannabinoid Receptor Modulators/agonists , Cannabinoid Receptor Modulators/antagonists & inhibitors , Cells, Cultured , Electric Stimulation , Excitatory Amino Acid Antagonists/pharmacology , GABA Antagonists , In Vitro Techniques , Mice , Mice, Transgenic , Nerve Net/drug effects , Neural Inhibition/drug effects , Neural Inhibition/genetics , Neurons/classification , Neurons/drug effects , Organophosphorus Compounds/pharmacology , Picrotoxin/pharmacology , Piperidines/pharmacology , Potassium Channel Blockers/pharmacology , Pyrazoles/pharmacology , Quinoxalines/pharmacology , Rats , Rats, Sprague-Dawley , Receptor, Cannabinoid, CB1/deficiency , Sodium Channel Blockers/pharmacology , Tetrodotoxin/pharmacology , Valine/analogs & derivatives , Valine/pharmacology
14.
Learn Mem ; 18(9): 558-64, 2011 Sep.
Article in English | MEDLINE | ID: mdl-21852430

ABSTRACT

Apolipoprotein receptors belong to an evolutionarily conserved surface receptor family that has intimate roles in the modulation of synaptic plasticity and is necessary for proper hippocampal-dependent memory formation. The known lipoprotein receptor ligand Reelin is important for normal synaptic plasticity, dendritic morphology, and cognitive function; however, the in vivo effect of enhanced Reelin signaling on cognitive function and synaptic plasticity in wild-type mice is unknown. The present studies test the hypothesis that in vivo enhancement of Reelin signaling can alter synaptic plasticity and ultimately influence processes of learning and memory. Purified recombinant Reelin was injected bilaterally into the ventricles of wild-type mice. We demonstrate that a single in vivo injection of Reelin increased activation of adaptor protein Disabled-1 and cAMP-response element binding protein after 15 min. These changes correlated with increased dendritic spine density, increased hippocampal CA1 long-term potentiation (LTP), and enhanced performance in associative and spatial learning and memory. The present study suggests that an acute elevation of in vivo Reelin can have long-term effects on synaptic function and cognitive ability in wild-type mice.


Subject(s)
Brain/cytology , Cell Adhesion Molecules, Neuronal/pharmacology , Cognition/drug effects , Dendritic Spines/drug effects , Extracellular Matrix Proteins/pharmacology , Nerve Tissue Proteins/pharmacology , Neuronal Plasticity/drug effects , Neurons/ultrastructure , Serine Endopeptidases/pharmacology , Action Potentials/drug effects , Animals , CREB-Binding Protein/metabolism , Conditioning, Psychological/drug effects , Dendritic Spines/ultrastructure , Excitatory Postsynaptic Potentials/drug effects , Exploratory Behavior/drug effects , Fear/drug effects , Fear/psychology , HEK293 Cells/cytology , Humans , Maze Learning/drug effects , Mice , Mice, Inbred C57BL , Nerve Tissue Proteins/metabolism , Reelin Protein , Silver Staining/methods
15.
PLoS One ; 4(5): e5505, 2009.
Article in English | MEDLINE | ID: mdl-19430527

ABSTRACT

BACKGROUND: Reelin is a large secreted protein of the extracellular matrix that has been proposed to participate to the etiology of schizophrenia. During development, reelin is crucial for the correct cytoarchitecture of laminated brain structures and is produced by a subset of neurons named Cajal-Retzius. After birth, most of these cells degenerate and reelin expression persists in postnatal and adult brain. The phenotype of neurons that bind secreted reelin and whether the continuous secretion of reelin is required for physiological functions at postnatal stages remain unknown. METHODOLOGY/PRINCIPAL FINDINGS: Combining immunocytochemical and pharmacological approaches, we first report that two distinct patterns of reelin expression are present in cultured hippocampal neurons. We show that in hippocampal cultures, reelin is secreted by GABAergic neurons displaying an intense reelin immunoreactivity (IR). We demonstrate that secreted reelin binds to receptors of the lipoprotein family on neurons with a punctate reelin IR. Secondly, using calcium imaging techniques, we examined the physiological consequences of reelin secretion blockade. Blocking protein secretion rapidly and reversibly changes the subunit composition of N-methyl-D-aspartate glutamate receptors (NMDARs) to a predominance of NR2B-containing NMDARs. Addition of recombinant or endogenously secreted reelin rescues the effects of protein secretion blockade and reverts the fraction of NR2B-containing NMDARs to control levels. Therefore, the continuous secretion of reelin is necessary to control the subunit composition of NMDARs in hippocampal neurons. CONCLUSIONS/SIGNIFICANCE: Our data show that the heterogeneity of reelin immunoreactivity correlates with distinct functional populations: neurons synthesizing and secreting reelin and/or neurons binding reelin. Furthermore, we show that continuous reelin secretion is a strict requirement to maintain the composition of NMDARs. We propose that reelin is a trans-neuronal messenger secreted by GABAergic neurons that regulates NMDARs homeostasis in postnatal hippocampus. Defects in reelin secretion could play a major role in the development of neuropsychiatric disorders, particularly those associated with deregulation of NMDARs such as schizophrenia.


Subject(s)
Cell Adhesion Molecules, Neuronal/metabolism , Extracellular Matrix Proteins/metabolism , Nerve Tissue Proteins/metabolism , Neurons/metabolism , Receptors, Glutamate/metabolism , Serine Endopeptidases/metabolism , Animals , Animals, Newborn , Brefeldin A/pharmacology , Calcium/metabolism , Cell Adhesion Molecules, Neuronal/genetics , Cells, Cultured , Cycloheximide/pharmacology , Extracellular Matrix Proteins/genetics , Hippocampus/cytology , Hippocampus/metabolism , Homeostasis/physiology , Immunohistochemistry , Mice , Nerve Tissue Proteins/genetics , Neurons/cytology , Neurons/drug effects , Protein Synthesis Inhibitors/pharmacology , Receptors, N-Methyl-D-Aspartate/metabolism , Recombinant Proteins/pharmacology , Reelin Protein , Serine Endopeptidases/genetics , Time Factors , gamma-Aminobutyric Acid/metabolism , gamma-Aminobutyric Acid/pharmacology
16.
Neuron Glia Biol ; 4(3): 189-96, 2008 Aug.
Article in English | MEDLINE | ID: mdl-19678965

ABSTRACT

In the postnatal forebrain, the extracellular matrix protein reelin is expressed and secreted by subsets of GABAergic neurons, whereas in the cerebellum reelin is detected in glutamatergic cells of the granule cell layer. Thus, various regions of the postnatal brain present different patterns of reelin expression, whose significance remains unknown. We combined immunocytochemical and pharmacological approaches to characterize the phenotypic and temporal profiles of reelin expression in dissociated cultures of cerebellar granule neurons. A single type of reelin immunoreactivity, identified by a punctate labelling, was present in the somata of the majority of neurons. This immunoreactivity was observed throughout maturation and was exclusively present in glutamatergic neurons expressing the vesicular glutamate transporter 1. Neurons containing the reelin receptors apolipoprotein E receptor 2 (Apoer2) and very low-density lipoprotein receptor (Vldlr) represented about 80% of cerebellar neurons. The vast majority of reelin-positive neurons coexpressed Apoer2, suggesting that reelin immunoreactivity resulted in part from receptor-bound reelin. Inhibition of protein synthesis with cycloheximide completely abolished reelin immunoreactivity. In contrast, blocking protein secretion with brefeldin A did not affect the proportion of punctate neurons but revealed a subpopulation of neurons characterized by a solid reelin staining. These data show for the first time that a homogeneous population of glutamatergic neurons can synthesize and secrete reelin in cerebellar granule cells in vitro.


Subject(s)
Cell Adhesion Molecules, Neuronal/metabolism , Cerebellum/cytology , Extracellular Matrix Proteins/metabolism , Glutamic Acid/metabolism , Nerve Tissue Proteins/metabolism , Neurons/metabolism , Serine Endopeptidases/metabolism , Animals , Animals, Newborn , Brefeldin A/pharmacology , Cell Count/methods , Cycloheximide/pharmacology , Glutamate Decarboxylase/metabolism , LDL-Receptor Related Proteins , Mice , Neurons/drug effects , Protein Synthesis Inhibitors/pharmacology , Receptors, LDL/metabolism , Receptors, Lipoprotein/metabolism , Reelin Protein , Time Factors , Vesicular Glutamate Transport Protein 1/metabolism , Vesicular Inhibitory Amino Acid Transport Proteins/metabolism
17.
J Neurosci ; 27(38): 10165-75, 2007 Sep 19.
Article in English | MEDLINE | ID: mdl-17881522

ABSTRACT

During postnatal development, changes in the subunit composition of glutamate receptors of the NMDA subtype (NMDARs) are key to the refinement of excitatory synapses. Hypotheses for maturation of synaptic NMDARs include regulation of their expression levels, membrane targeting, and surface movements. In addition, several members of extracellular matrix (ECM) proteins such as Reelin are involved in synaptic plasticity. However, it is not known whether and how ECM proteins regulate synaptic NMDAR maturation. To probe the participation of NMDARs to synaptic currents and NMDARs surface dynamics, we used electrophysiological recordings and single-particle tracking in cultured hippocampal neurons. Our results show that, during maturation, Reelin orchestrates the regulation of subunit composition of synaptic NMDARs and controls the surface mobility of NR2B subunits. During postnatal maturation, we observed a marked decrease of NR1/NR2B receptor participation to NMDAR-mediated synaptic currents concomitant with the accumulation of Reelin at active synapses. Blockade of the function of Reelin prevented the maturation-dependent reduction in NR1/NR2B-mediated synaptic currents. The reduction of NR1/NR2B receptors was not inhibited by blocking synaptic activity but required beta1-containing integrin receptors. Single-particle tracking showed that inhibition of Reelin decreased the surface mobility of native NR2B-containing NMDARs, whereas their synaptic dwell time increased. Conversely, recombinant Reelin dramatically reduced NR2B-mediated synaptic currents and the time spent by NR2B subunits within synapses. Our data reveal a new mode of control of synaptic NMDAR assembly at postnatal hippocampal synapses and an unprecedented role of ECM proteins in regulating glutamate receptor surface diffusion.


Subject(s)
Cell Adhesion Molecules, Neuronal/physiology , Cell Membrane/metabolism , Extracellular Matrix Proteins/physiology , Nerve Tissue Proteins/physiology , Receptors, N-Methyl-D-Aspartate/antagonists & inhibitors , Receptors, N-Methyl-D-Aspartate/metabolism , Serine Endopeptidases/physiology , Synapses/physiology , Animals , Animals, Newborn , Cell Membrane/chemistry , Cell Membrane/physiology , Cells, Cultured , Excitatory Postsynaptic Potentials/physiology , Gene Expression Regulation, Developmental/physiology , Mice , Protein Transport/physiology , Receptors, N-Methyl-D-Aspartate/chemistry , Reelin Protein
18.
J Neurosci ; 25(26): 6127-36, 2005 Jun 29.
Article in English | MEDLINE | ID: mdl-15987942

ABSTRACT

Reelin is a secreted protein that regulates brain layer formation during embryonic development. Reelin binds several receptors, including two members of the low-density lipoprotein (LDL) receptor family, the apolipoprotein E receptor 2 (ApoER2) and the very-low-density lipoprotein receptor (VLDLR). Despite the high level of expression of Reelin and ApoER2 in the postnatal brain, their functions in the adult CNS remain elusive. Here, using electrophysiological, immunocytochemical, and biochemical approaches in cultured postnatal hippocampal neurons, we show that Reelin controls the change in subunit composition of somatic NMDA glutamate receptors (NMDARs) during maturation. We found that maturation is characterized by the gradual decrease of the participation of NR1/2B receptors to whole-cell NMDAR-mediated currents. This maturational change was mirrored by a timely correlated increase of both Reelin immunoreactivity in neuronal somata and the amount of secreted Reelin. Chronic blockade of the function of Reelin with antisense oligonucleotides or the function-blocking antibody CR-50 prevented the decrease of NR1/2B-mediated whole-cell currents. Conversely, exogenously added recombinant Reelin accelerated the maturational changes in NMDA-evoked currents. The maturation-induced change in NMDAR subunits also was blocked by chronic treatment with an inhibitor of the Src kinase signaling pathway or an antagonist of the LDL receptors, but not by inhibitors of another class of Reelin receptor belonging to the integrin family. Consistent with these results, immunocytochemistry revealed that NR1-expressing neurons also expressed ApoER2 and VLDLR. These data reveal a new role for Reelin and LDL receptors and reinforce the idea of a prominent role of extracellular matrix proteins in postnatal maturation.


Subject(s)
Cell Adhesion Molecules, Neuronal/physiology , Extracellular Matrix Proteins/physiology , Hippocampus/physiology , Nerve Tissue Proteins/physiology , Neurons/physiology , Receptors, LDL/physiology , Receptors, Lipoprotein/physiology , Receptors, N-Methyl-D-Aspartate/physiology , Serine Endopeptidases/physiology , Animals , Cell Culture Techniques , Culture Media , Hippocampus/growth & development , Immunohistochemistry , Integrins/physiology , LDL-Receptor Related Proteins , Mice , Neurons/cytology , Receptors, N-Methyl-D-Aspartate/chemistry , Reelin Protein
SELECTION OF CITATIONS
SEARCH DETAIL
...