Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Syndromol ; 9(5): 235-240, 2019 Jan.
Article in English | MEDLINE | ID: mdl-30733657

ABSTRACT

Interstitial 5q22 deletions are relatively rare and usually represented by severe clinical features such as developmental delay and growth retardation. Here, we report a 23-year-old male patient, referred to our laboratory for genetic confirmation of possible familial adenomatous polyposis. MLPA and the subsequent array CGH identified an approximately 8-Mb-sized deletion in the 5q22.2q23.1 locus. Further analysis of the deleted region and the genes within suggested a possible role for the TSSK1B (testis-specific serine/threonine kinase 1) gene in the patient's reproductive capacity. Semen analysis confirmed that the patient's reproductive capability was impaired, and that he suffered from asthenoteratozoospermia. Analysis of the azoospermia factor region on the Y chromosome revealed no microdeletions. Further sequencing tests could not find an alternative explanation for the patient's infertility. This case demonstrates a possible role of TSSK1B in male reproduction.

2.
World J Gastrointest Pathophysiol ; 9(4): 73-78, 2018 Nov 12.
Article in English | MEDLINE | ID: mdl-30809418

ABSTRACT

Gastrointestinal diseases, specifically Crohn's disease, ulcerative colitis, diverticular disease, and primary biliary cirrhosis are all characterized by complicated inflammation of the digestive tract. Their pathology is multifactorial, and risk factors encompass both genetic and environmental factors. Recent advances in the genetic component of inflammatory bowel diseases (IBDs) have revealed that the tumor necrosis factor superfamily member 15 (TNFSF15) contains a number of risk alleles associated not only with IBD but also with other diseases such as diverticular disease and primary biliary cirrhosis. These risk alleles in TNFSF15 and the altered expression of its gene product can serve as the common ground between these disorders by explaining at least some of the underlying processes that lead to a dysregulated immune response and subsequent chronic inflammation. Here, we aim to outline how the TNFSF15 gene is involved in the proliferation and cell fate of different populations of T cells and subsequently in the control of both pro- and anti-inflammatory cytokines. Furthermore, we summarize what is currently known of TNFSF15 control region variants, how they are associated with each mentioned disease, and how these variants can explain the autoimmune pathology of said diseases through altered TNFSF15 expression.

SELECTION OF CITATIONS
SEARCH DETAIL
...