Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 70
Filter
1.
Sci Rep ; 14(1): 10131, 2024 05 02.
Article in English | MEDLINE | ID: mdl-38698085

ABSTRACT

Fusarium head blight (FHB) is a significantly important disease in cereals primarily caused by Fusarium species. FHB control is largely executed through chemical strategies, which are costlier to sustainable wheat production, resulting in leaning towards sustainable sources such as resistance breeding and biological control methods for FHB. The present investigation was aimed at evaluating newly identified bacterial consortium (BCM) as biocontrol agents for FHB and understanding the morpho-physiological traits associated with the disease resistance of spring wheat. Preliminary evaluation through antagonistic plate assay and in vivo assessment indicated that BCM effectively inhibited Fusarium growth in spring wheat, reducing area under disease progress curve (AUDPC) and deoxynivalenol (DON), potentially causing type II and V resistance, and improving single spike yield (SSPY). Endurance to FHB infection with the application of BCM is associated with better sustenance of spike photosynthetic performance by improving the light energy harvesting and its utilization. Correlation and path-coefficient analysis indicated that maximum quantum yield (QY_max) is directly influencing the improvement of SSPY and reduction of grain DON accumulation, which is corroborated by principal component analysis. The chlorophyll fluorescence traits identified in the present investigation might be applied as a phenotyping tool for the large-scale identification of wheat sensitivity to FHB.


Subject(s)
Disease Resistance , Fusarium , Plant Diseases , Triticum , Triticum/microbiology , Fusarium/physiology , Plant Diseases/microbiology , Plant Diseases/prevention & control , Microbial Consortia/physiology , Trichothecenes/metabolism , Photosynthesis , Bacteria/metabolism , Bacteria/genetics
2.
Sci Rep ; 14(1): 9222, 2024 04 22.
Article in English | MEDLINE | ID: mdl-38649433

ABSTRACT

Microwave (MW) heating has gained significant attention in food industries and biomass-to-biofuels through pyrolysis over conventional heating. However, constraints for promoting MW heating related to the use of different MW absorbers are still a major concern that needs to be investigated. The present study was conducted to explore the MW heating performance of biochar as a low-cost MW absorber for performing pyrolysis. Experiments were performed on biochar under different biochar dosing (25 g, 37.5 g, 50 g), MW power (400 W, 700 W, 1000 W), and particle sizes (6 mm, 8 mm, 10 mm). Results showed that MW power and biochar dosing significantly impacted average heating rate (AHR) from 17.5 to 65.4 °C/min at 400 W and 1000 W at 50 g. AHR first increased, and then no significant changes were obtained, from 37.5 to 50 g. AHR was examined by full factorial design, with 94.6% fitting actual data with predicted data. The model suggested that the particle size of biochar influenced less on AHR. Furthermore, microwave absorption efficiency and biochar weight loss were investigated, and microwave absorption efficiency decreased as MW power increased, which means 17.16% of microwave absorption efficiency was achieved at 400 W rather than 700 W and 1000 W. Biochar weight loss estimated by employing mass-balance analysis, 2-10.4% change in biochar weight loss was obtained owing to higher heating rates at higher powers and biochar dosing.


Subject(s)
Charcoal , Microwaves , Pyrolysis , Charcoal/chemistry , Heating , Particle Size , Hot Temperature
3.
Plants (Basel) ; 13(7)2024 Apr 07.
Article in English | MEDLINE | ID: mdl-38611568

ABSTRACT

Challenges of climate change and growth population are exacerbated by noticeable environmental changes, which can increase the range of plant diseases, for instance, net blotch (NB), a foliar disease which significantly decreases barley (Hordeum vulgare L.) grain yield and quality. A resistant germplasm is usually identified through visual observation and the scoring of disease symptoms; however, this is subjective and time-consuming. Thus, automated, non-destructive, and low-cost disease-scoring approaches are highly relevant to barley breeding. This study presents a novel screening method for evaluating NB severity in barley. The proposed method uses an automated RGB imaging system, together with machine learning, to evaluate different symptoms and the severity of NB. The study was performed on three barley cultivars with distinct levels of resistance to NB (resistant, moderately resistant, and susceptible). The tested approach showed mean precision of 99% for various categories of NB severity (chlorotic, necrotic, and fungal lesions, along with leaf tip necrosis). The results demonstrate that the proposed method could be effective in assessing NB from barley leaves and specifying the level of NB severity; this type of information could be pivotal to precise selection for NB resistance in barley breeding.

4.
Mol Plant ; 17(4): 552-578, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38475993

ABSTRACT

Genomic selection, the application of genomic prediction (GP) models to select candidate individuals, has significantly advanced in the past two decades, effectively accelerating genetic gains in plant breeding. This article provides a holistic overview of key factors that have influenced GP in plant breeding during this period. We delved into the pivotal roles of training population size and genetic diversity, and their relationship with the breeding population, in determining GP accuracy. Special emphasis was placed on optimizing training population size. We explored its benefits and the associated diminishing returns beyond an optimum size. This was done while considering the balance between resource allocation and maximizing prediction accuracy through current optimization algorithms. The density and distribution of single-nucleotide polymorphisms, level of linkage disequilibrium, genetic complexity, trait heritability, statistical machine-learning methods, and non-additive effects are the other vital factors. Using wheat, maize, and potato as examples, we summarize the effect of these factors on the accuracy of GP for various traits. The search for high accuracy in GP-theoretically reaching one when using the Pearson's correlation as a metric-is an active research area as yet far from optimal for various traits. We hypothesize that with ultra-high sizes of genotypic and phenotypic datasets, effective training population optimization methods and support from other omics approaches (transcriptomics, metabolomics and proteomics) coupled with deep-learning algorithms could overcome the boundaries of current limitations to achieve the highest possible prediction accuracy, making genomic selection an effective tool in plant breeding.


Subject(s)
Genome, Plant , Plant Breeding , Humans , Genome, Plant/genetics , Selection, Genetic , Genomics , Phenotype , Genotype , Plants , Polymorphism, Single Nucleotide/genetics
5.
Front Plant Sci ; 15: 1348014, 2024.
Article in English | MEDLINE | ID: mdl-38510437

ABSTRACT

Faba bean (Vicia faba L.) is a legume crop grown in diverse climates worldwide. It has a high potential for increased cultivation to meet the need for more plant-based proteins in human diets, a prerequisite for a more sustainable food production system. Characterization of diversity panels of crops can identify variation in and genetic markers for target traits of interest for plant breeding. In this work, we collected a diversity panel of 220 accessions of faba bean from around the world consisting of gene bank material and commercially available cultivars. The aims of this study were to quantify the phenotypic diversity in target traits to analyze the impact of breeding on these traits, and to identify genetic markers associated with traits through a genome-wide association study (GWAS). Characterization under field conditions at Nordic latitude across two years revealed a large genotypic variation and high broad-sense heritability for eleven agronomic and seed quality traits. Pairwise correlations showed that seed yield was positively correlated to plant height, number of seeds per plant, and days to maturity. Further, susceptibility to bean weevil damage was significantly higher for early flowering accessions and accessions with larger seeds. In this study, no yield penalty was found for higher seed protein content, but protein content was negatively correlated to starch content. Our results showed that while breeding advances in faba bean germplasm have resulted in increased yields and number of seeds per plant, they have also led to a selection pressure towards delayed onset of flowering and maturity. DArTseq genotyping identified 6,606 single nucleotide polymorphisms (SNPs) by alignment to the faba bean reference genome. These SNPs were used in a GWAS, revealing 51 novel SNP markers significantly associated with ten of the assessed traits. Three markers for days to flowering were found in predicted genes encoding proteins for which homologs in other plant species regulate flowering. Altogether, this work enriches the growing pool of phenotypic and genotypic data on faba bean as a valuable resource for developing efficient breeding strategies to expand crop cultivation.

6.
Trends Plant Sci ; 2024 Feb 13.
Article in English | MEDLINE | ID: mdl-38355326

ABSTRACT

Spatiotemporal soil heterogeneity and the resulting edaphic stress cycles can be decisive for crop growth. However, our understanding of the acclimative value of root responses to heterogeneous soil conditions remains limited. We outline a framework to evaluate the acclimative value of root responses that distinguishes between stress responses that are persistent and reversible upon stress release, termed 'plasticity' and 'elasticity', respectively. Using energy balances, we provide theoretical evidence that the advantage of plasticity over elasticity increases with the number of edaphic stress cycles and if responses lead to comparatively high energy gains. Our framework provides a conceptual basis for assessing the acclimative value of root responses to soil heterogeneity and can catalyse research on crop adaptations to heterogeneous belowground environments.

7.
PLoS One ; 19(2): e0298350, 2024.
Article in English | MEDLINE | ID: mdl-38359024

ABSTRACT

Climate change-induced drought has an effect on the nutritional quality of wheat. Here, the impact of drought at different plant stages on mineral content in mature wheat was evaluated in 30 spring-wheat lines of diverse backgrounds (modern, old and wheat-rye-introgressions). Genotypes with rye chromosome 3R introgression showed a high accumulation of several important minerals, including Zn and Fe, and these also showed stability across drought conditions. High Se content was found in genotypes with chromosome 1R. Old cultivars (K, Mg, Na, P and S) and 2R introgression lines (Fe, Ca, Mn, Mg and Na) demonstrated high mineral yield at early and late drought, respectively. Based on the low nutritional value often reported for modern wheat and negative climate effects on the stability of mineral content and yield, genes conferring high Zn/Fe, Se, and stable mineral yield under drought at various plant stages should be explicitly explored among 3R, 1R, old and 2R genotypes, respectively.


Subject(s)
Droughts , Triticum , Triticum/genetics , Minerals , Genotype , Plant Structures
8.
Sci Rep ; 14(1): 1277, 2024 01 13.
Article in English | MEDLINE | ID: mdl-38218867

ABSTRACT

Common scab (CS) is a major bacterial disease causing lesions on potato tubers, degrading their appearance and reducing their market value. To accurately grade scab-infected potato tubers, this study introduces "ScabyNet", an image processing approach combining color-morphology analysis with deep learning techniques. ScabyNet estimates tuber quality traits and accurately detects and quantifies CS severity levels from color images. It is presented as a standalone application with a graphical user interface comprising two main modules. One module identifies and separates tubers on images and estimates quality-related morphological features. In addition, it enables the extraction of tubers as standard tiles for the deep-learning module. The deep-learning module detects and quantifies the scab infection into five severity classes related to the relative infected area. The analysis was performed on a dataset of 7154 images of individual tiles collected from field and glasshouse experiments. Combining the two modules yields essential parameters for quality and disease inspection. The first module simplifies imaging by replacing the region proposal step of instance segmentation networks. Furthermore, the approach is an operational tool for an affordable phenotyping system that selects scab-resistant genotypes while maintaining their market standards.


Subject(s)
Deep Learning , Solanum tuberosum , Solanum tuberosum/genetics , Plant Diseases/microbiology , Plant Tubers/microbiology , Phenotype
9.
Plants (Basel) ; 12(23)2023 Nov 29.
Article in English | MEDLINE | ID: mdl-38068649

ABSTRACT

Climate change and global food security efforts are driving the need for adaptable crops in higher latitude temperate regions. To achieve this, traits linked with winter hardiness must be introduced in winter-type crops. Here, we evaluated the freezing tolerance (FT) of a panel of 160 winter wheat genotypes of Nordic origin under controlled conditions and compared the data with the winter hardiness of 74 of these genotypes from a total of five field trials at two locations in Norway. Germplasm with high FT was identified, and significant differences in FT were detected based on country of origin, release years, and culton type. FT measurements under controlled conditions significantly correlated with overwintering survival scores in the field (r ≤ 0.61) and were shown to be a reliable complementary high-throughput method for FT evaluation. Genome-wide association studies (GWAS) revealed five single nucleotide polymorphism (SNP) markers associated with FT under controlled conditions mapped to chromosomes 2A, 2B, 5A, 5B, and 7A. Field trials yielded 11 significant SNP markers located within or near genes, mapped to chromosomes 2B, 3B, 4A, 5B, 6B, and 7D. Candidate genes identified in this study can be introduced into the breeding programs of winter wheat in the Nordic region.

10.
Sci Rep ; 13(1): 15651, 2023 09 20.
Article in English | MEDLINE | ID: mdl-37730954

ABSTRACT

Septoria tritici blotch (STB) is a destructive foliar diseases threatening wheat grain yield. Wheat breeding for STB disease resistance has been identified as the most sustainable and environment-friendly approach. In this work, a panel of 316 winter wheat breeding lines from a commercial breeding program were evaluated for STB resistance at the seedling stage under controlled conditions followed by genome-wide association study (GWAS) and genomic prediction (GP). The study revealed a significant genotypic variation for STB seedling resistance, while disease severity scores exhibited a normal frequency distribution. Moreover, we calculated a broad-sense heritability of 0.62 for the trait. Nine single- and multi-locus GWAS models identified 24 marker-trait associations grouped into 20 quantitative trait loci (QTLs) for STB seedling-stage resistance. The seven QTLs located on chromosomes 1B, 2A, 2B, 5B (two), 7A, and 7D are reported for the first time and could potentially be novel. The GP cross-validation analysis in the RR-BLUP model estimated the genomic-estimated breeding values (GEBVs) of STB resistance with a prediction accuracy of 0.49. Meanwhile, the GWAS assisted wRR-BLUP model improved the accuracy to 0.58. The identified QTLs can be used for marker-assisted backcrossing against STB in winter wheat. Moreover, the higher prediction accuracy recorded from the GWAS-assisted GP analysis implies its power to successfully select superior candidate lines based on their GEBVs for STB resistance.


Subject(s)
Genome-Wide Association Study , Triticum , Triticum/genetics , Plant Breeding , Genomics , Seedlings
11.
Front Plant Sci ; 14: 1179701, 2023.
Article in English | MEDLINE | ID: mdl-37275246

ABSTRACT

Wheat production and end-use quality are severely threatened by drought and heat stresses. This study evaluated stress impacts on phenotypic and gluten protein characteristics of eight spring wheat genotypes (Diskett, Happy, Bumble, SW1, SW2, SW3, SW4, and SW5) grown to maturity under controlled conditions (Biotron) using RGB imaging and size-exclusion high-performance liquid chromatography (SE-HPLC). Among the stress treatments compared, combined heat-drought stress had the most severe negative impacts on biomass (real and digital), grain yield, and thousand kernel weight. Conversely, it had a positive effect on most gluten parameters evaluated by SE-HPLC and resulted in a positive correlation between spike traits and gluten strength, expressed as unextractable gluten polymer (%UPP) and large monomeric protein (%LUMP). The best performing genotypes in terms of stability were Happy, Diskett, SW1, and SW2, which should be further explored as attractive breeding material for developing climate-resistant genotypes with improved bread-making quality. RGB imaging in combination with gluten protein screening by SE-HPLC could thus be a valuable approach for identifying climate stress-tolerant wheat genotypes.

12.
PLoS One ; 18(5): e0285565, 2023.
Article in English | MEDLINE | ID: mdl-37163567

ABSTRACT

Spring wheat is an economically important crop for Scandinavia and its cultivation is likely to be affected by climate change. The current study focused on wheat yield in recent years, during which climate change-related yield fluctuations have been more pronounced than previously observed. Here, effects of the environment, together with the genotype and fungicide treatment was evaluated. Spring wheat multi-location trials conducted at five locations between 2016 and 2020 were used to understand effects of the climate and fungicides on wheat yield. The results showed that the environment has a strong effect on grain yield, followed by the genotype effect. Moreover, temperature has a stronger (negative) impact than rainfall on grain yield and crop growing duration. Despite a low rainfall in the South compared to the North, the southern production region (PR) 2 had the highest yield performance, indicating the optimal environment for spring wheat production. The fungicide treatment effect was significant in 2016, 2017 and 2020. Overall, yield reduction due to fungal diseases ranged from 0.98 (2018) to 13.3% (2017) and this reduction was higher with a higher yield. Overall yield reduction due to fungal diseases was greater in the South (8.9%) than the North zone (5.3%). The genotypes with higher tolerance to diseases included G4 (KWS Alderon), G14 (WPB 09SW025-11), and G23 (SW 11360) in 2016; G24 (SW 11360), G25 (Millie), and G19 (SEC 526-07-2) in 2017; and G19 (WPB 13SW976-01), G12 (Levels), and G18 (SW 141011) in 2020. The combined best performing genotypes for disease tolerance and stable and higher yield in different locations were KWS Alderon, SEC 526-07-2, and WPB 13SW976-01 with fungicide treatment and WPB Avonmore, SEC 526-07-2, SW 131323 without fungicide treatment. We conclude that the best performing genotypes could be recommended for Scandinavian climatic conditions with or without fungicide application and that developing heat-tolerant varieties for Scandinavian countries should be prioritized.


Subject(s)
Gene-Environment Interaction , Mycoses , Triticum/genetics , Sweden , Edible Grain/genetics , Genotype , Heat-Shock Response
13.
Theor Appl Genet ; 136(4): 92, 2023 Apr 03.
Article in English | MEDLINE | ID: mdl-37009920

ABSTRACT

KEY MESSAGE: Linkage disequilibrium (LD)-based haplotyping with subsequent SNP tagging improved the genomic prediction accuracy up to 0.07 and 0.092 for Fusarium head blight resistance and spike width, respectively, across six different models. Genomic prediction is a powerful tool to enhance genetic gain in plant breeding. However, the method is accompanied by various complications leading to low prediction accuracy. One of the major challenges arises from the complex dimensionality of marker data. To overcome this issue, we applied two pre-selection methods for SNP markers viz. LD-based haplotype-tagging and GWAS-based trait-linked marker identification. Six different models were tested with preselected SNPs to predict the genomic estimated breeding values (GEBVs) of four traits measured in 419 winter wheat genotypes. Ten different sets of haplotype-tagged SNPs were selected by adjusting the level of LD thresholds. In addition, various sets of trait-linked SNPs were identified with different scenarios from the training-test combined and only from the training populations. The BRR and RR-BLUP models developed from haplotype-tagged SNPs had a higher prediction accuracy for FHB and SPW by 0.07 and 0.092, respectively, compared to the corresponding models developed without marker pre-selection. The highest prediction accuracy for SPW and FHB was achieved with tagged SNPs pruned at weak LD thresholds (r2 < 0.5), while stringent LD was required for spike length (SPL) and flag leaf area (FLA). Trait-linked SNPs identified only from training populations failed to improve the prediction accuracy of the four studied traits. Pre-selection of SNPs via LD-based haplotype-tagging could play a vital role in optimizing genomic selection and reducing genotyping costs. Furthermore, the method could pave the way for developing low-cost genotyping methods through customized genotyping platforms targeting key SNP markers tagged to essential haplotype blocks.


Subject(s)
Fusarium , Haplotypes , Triticum/genetics , Polymorphism, Single Nucleotide , Plant Breeding , Phenotype , Genotype , Genomics/methods
14.
Sci Rep ; 13(1): 6413, 2023 04 19.
Article in English | MEDLINE | ID: mdl-37076536

ABSTRACT

Colorectal cancer (CRC) is the third most prevalent cancer type and accounts for nearly one million deaths worldwide. The CRC mRNA gene expression datasets from TCGA and GEO (GSE144259, GSE50760, and GSE87096) were analyzed to find the significant differentially expressed genes (DEGs). These significant genes were further processed for feature selection through boruta and the confirmed features of importance (genes) were subsequently used for ML-based prognostic classification model development. These genes were analyzed for survival and correlation analysis between final genes and infiltrated immunocytes. A total of 770 CRC samples were included having 78 normal and 692 tumor tissue samples. 170 significant DEGs were identified after DESeq2 analysis along with the topconfects R package. The 33 confirmed features of importance-based RF prognostic classification model have given accuracy, precision, recall, and f1-score of 100% with 0% standard deviation. The overall survival analysis had finalized GLP2R and VSTM2A genes that were significantly downregulated in tumor samples and had a strong correlation with immunocyte infiltration. The involvement of these genes in CRC prognosis was further confirmed on the basis of their biological function and literature analysis. The current findings indicate that GLP2R and VSTM2A may play a significant role in CRC progression and immune response suppression.


Subject(s)
Adenocarcinoma , Colorectal Neoplasms , Humans , Prognosis , Survival Analysis , Colorectal Neoplasms/pathology , Adenocarcinoma/genetics , Gene Expression Regulation, Neoplastic
15.
Plants (Basel) ; 12(4)2023 Feb 06.
Article in English | MEDLINE | ID: mdl-36840063

ABSTRACT

Barley (Hordeul vulgare L.) is the fourth most important cereal crop based on production and cultivated area. Biotic stresses, especially fungal diseases in barley, are devastating, incurring high possibilities of absolute yield loss. Identifying superior and stable yielding genotypes is crucial for accompanying the increasing barley demand. However, the identification and recommendation of superior genotypes is challenging due to the interaction between genotype and environment. Hence, the present investigation was aimed at evaluating the grain yield of different sets of spring barley genotypes when undergoing one of two treatments (no treatment and fungicide treatment) laid out in an alpha lattice design in six to seven locations for five years, through additive main effects and multiplicative interaction (AMMI), GGE biplot (genotype + genotype X environment), and stability analysis. The combined analysis of variance indicated that the environment was the main factor that contributed to the variation in grain yield, followed by genotype X environment interaction (GEI) effects and genotypic effects. Ten mega environments (MEs) with five MEs from each of the treatments harboured well-adapted, stable yielding genotypes. Exploiting the stable yielding genotypes with discreet use of the representative and discriminative environments identified in the present study could aid in breeding for the improvement of grain yield in spring barley genotypes.

16.
Curr Neuropharmacol ; 21(4): 764-776, 2023.
Article in English | MEDLINE | ID: mdl-36797613

ABSTRACT

Alzheimer's is a chronic neurodegenerative disease where amyloid-beta (Aß) plaques and neurofibrillary tangles are formed inside the brain. It is also characterized by progressive memory loss, depression, neuroinflammation, and derangement of other neurotransmitters. Due to its complex etiopathology, current drugs have failed to completely cure the disease. Natural compounds have been investigated as an alternative therapy for their ability to treat Alzheimer's disease (AD). Traditional herbs and formulations which are used in the Indian ayurvedic system are rich sources of antioxidant, anti-amyloidogenic, neuroprotective, and anti-inflammatory compounds. They promote quality of life by improving cognitive memory and rejuvenating brain functioning through neurogenesis. A rich knowledge base of traditional herbal plants (Turmeric, Gingko, Ashwagandha, Shankhpushpi, Giloy, Gotu kola, Garlic, Tulsi, Ginger, and Cinnamon) combined with modern science could suggest new functional leads for Alzheimer's drug discovery. In this article Ayurveda, the ancient Indian herbal medicine system based on multiple clinical and experimental, evidence have been reviewed for treating AD and improving brain functioning. This article presents a modern perspective on the herbs available in the ancient Indian medicine system as well as their possible mechanisms of action for AD treatment. The main objective of this research is to provide a systematic review of herbal drugs that are easily accessible and effective for the treatment of AD.


Subject(s)
Alzheimer Disease , Neurodegenerative Diseases , Humans , Alzheimer Disease/drug therapy , Alzheimer Disease/pathology , Neurodegenerative Diseases/drug therapy , Quality of Life , Phytotherapy
17.
Front Plant Sci ; 13: 1010249, 2022.
Article in English | MEDLINE | ID: mdl-36330238

ABSTRACT

Fusarium head blight (FHB) is an economically important disease affecting wheat and thus poses a major threat to wheat production. Several studies have evaluated the effectiveness of image analysis methods to predict FHB using disease-infected grains; however, few have looked at the final application, considering the relationship between cost and benefit, resolution, and accuracy. The conventional screening of FHB resistance of large-scale samples is still dependent on low-throughput visual inspections. This study aims to compare the performance of two cost-benefit seed image analysis methods, the free software "SmartGrain" and the fully automated commercially available instrument "Cgrain Value™" by assessing 16 seed morphological traits of winter wheat to predict FHB. The analysis was carried out on a seed set of FHB which was visually assessed as to the severity. The dataset is composed of 432 winter wheat genotypes that were greenhouse-inoculated. The predictions from each method, in addition to the predictions combined from the results of both methods, were compared with the disease visual scores. The results showed that Cgrain Value™ had a higher prediction accuracy of R 2 = 0.52 compared with SmartGrain for which R 2 = 0.30 for all morphological traits. However, the results combined from both methods showed the greatest prediction performance of R 2 = 0.58. Additionally, a subpart of the morphological traits, namely, width, length, thickness, and color features, showed a higher correlation with the visual scores compared with the other traits. Overall, both methods were related to the visual scores. This study shows that these affordable imaging methods could be effective to predict FHB in seeds and enable us to distinguish minor differences in seed morphology, which could lead to a precise performance selection of disease-free seeds/grains.

18.
Int J Biol Macromol ; 220: 743-753, 2022 Nov 01.
Article in English | MEDLINE | ID: mdl-35987358

ABSTRACT

Cold shock proteins (CSPs) are an ancient and conserved family of proteins. They are renowned for their role in response to low-temperature stress in bacteria and nucleic acid binding activities. In prokaryotes, cold and non-cold inducible CSPs are involved in various cellular and metabolic processes such as growth and development, osmotic oxidation, starvation, stress tolerance, and host cell invasion. In prokaryotes, cold shock condition reduces cell transcription and translation efficiency. Eukaryotic cold shock domain (CSD) proteins are evolved form of prokaryotic CSPs where CSD is flanked by N- and C-terminal domains. Eukaryotic CSPs are multi-functional proteins. CSPs also act as nucleic acid chaperons by preventing the formation of secondary structures in mRNA at low temperatures. In human, CSD proteins play a crucial role in the progression of breast cancer, colon cancer, lung cancer, and Alzheimer's disease. A well-defined three-dimensional structure of intrinsically disordered regions of CSPs family members is still undetermined. In this article, intrinsic disorder regions of CSPs have been explored systematically to understand the pleiotropic role of the cold shock family of proteins.


Subject(s)
Cold Shock Proteins and Peptides , Cold-Shock Response , Intrinsically Disordered Proteins , Bacterial Proteins/chemistry , Cold Shock Proteins and Peptides/chemistry , Cold Temperature , Humans , Intrinsically Disordered Proteins/chemistry , Protein Structure, Secondary , RNA, Messenger/genetics
19.
Methods Mol Biol ; 2536: 459-474, 2022.
Article in English | MEDLINE | ID: mdl-35819621

ABSTRACT

RNA interference (RNAi) is a conserved cellular defense mechanism mediated by double-stranded RNA (dsRNA) that can regulate gene expression through targeted destruction of mRNAs (messenger RNAs). Recent studies have shown that spraying dsRNAs or small RNAs (sRNAs) that target essential genes of pathogens on plant surfaces can confer protection against pests and pathogens. Also called spray-induced gene silencing (SIGS), this strategy can be used for disease control and for transient gene silencing to study the function of genes in plant-pathogen interactions. Furthermore, as sRNAs can move locally, systemically, and cross-kingdom during plant-microbe interactions, SIGS allows quick detection and characterization of gene functions in pathogens and plants.


Subject(s)
Phytophthora , Gene Silencing , Phytophthora/genetics , Plants/genetics , RNA Interference , RNA, Double-Stranded/genetics
20.
BMC Plant Biol ; 22(1): 350, 2022 Jul 18.
Article in English | MEDLINE | ID: mdl-35850617

ABSTRACT

BACKGROUND: The genetic diversity and population structure of breeding germplasm is central knowledge for crop improvement. To gain insight into the genetic potential of the germplasm used for potato breeding in a Nordic breeding program as well as all available accessions from the Nordic genebank (NordGen), 133 potato genotypes were genotyped using the Infinium Illumina 20 K SNP array. After SNP filtering, 11 610 polymorphic SNPs were included in the analysis. In addition, data from three important breeding traits - percent dry matter and uniformity of tuber shape and eye - were scored to measure the variation potato cultivars and breeding clones. RESULTS: The genetic diversity among the genotypes was estimated using principal coordinate analysis based on the genetic distance between individuals, as well as by using the software STRUCTURE. Both methods suggest that the collected breeding material and the germplasm from the gene-bank are closely related, with a low degree of population structure between the groups. The phenotypic distribution among the genotypes revealed significant differences, especially between farmer's cultivars and released cultivars and breeding clones. The percent heterozygosity was similar between the groups, with a mean average of 58-60%. Overall, the breeding germplasm and the accessions from the Nordic genebank seems to be closely related with similar genetic background. CONCLUSION: The genetic potential of available Nordic potato breeding germplasm is low, and for genetic hybridization purposes, genotypes from outside the Nordic region should be employed.


Subject(s)
Solanum tuberosum , Clone Cells , Genetic Variation , Genotype , Heterozygote , Plant Breeding , Polymorphism, Single Nucleotide/genetics , Solanum tuberosum/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...