Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Neurosci ; 30(35): 11735-44, 2010 Sep 01.
Article in English | MEDLINE | ID: mdl-20810894

ABSTRACT

Cocaine self-administration alters patterns of gene expression in the brain that may underlie cocaine-induced neuronal plasticity. In the present study, male Sprague Dawley rats were allowed to self-administer cocaine (0.25 mg/infusion) 2 h/d for 14 d, followed by 7 d of forced abstinence. Compared with yoked saline control rats, cocaine self-administration resulted in increased brain-derived neurotrophic factor (BDNF) protein levels in the rat medial prefrontal cortex (mPFC). To examine the functional relevance of this finding, cocaine self-administration maintained under a progressive ratio schedule of reinforcement was assessed after short hairpin RNA-induced suppression of BDNF expression in the mPFC. Decreased BDNF expression in the mPFC increased the cocaine self-administration breakpoint. Next, the effect of cocaine self-administration on specific BDNF exons was assessed; results revealed selectively increased BDNF exon IV-containing transcripts in the mPFC. Moreover, there were significant cocaine-induced increases in acetylated histone H3 (AcH3) and phospho-cAMP response element binding protein (pCREB) association with BDNF promoter IV. In contrast, there was decreased methyl-CpG-binding protein 2 (MeCP2) association with BDNF promoter IV in the mPFC of rats that previously self-administered cocaine. Together, these results indicate that cocaine-induced increases in BDNF promoter IV transcript in the mPFC are driven by increased binding of AcH3 and pCREB as well as decreased MeCP2 binding at this BDNF promoter. Collectively, these results indicate that cocaine self-administration remodels chromatin in the mPFC, resulting in increased expression of BDNF, which appears to represent a compensatory neuroadaptation that reduces the reinforcing efficacy of cocaine.


Subject(s)
Brain-Derived Neurotrophic Factor/biosynthesis , Brain-Derived Neurotrophic Factor/genetics , Chromatin Assembly and Disassembly/drug effects , Chromatin Assembly and Disassembly/physiology , Cocaine/administration & dosage , Prefrontal Cortex/drug effects , Prefrontal Cortex/metabolism , Reinforcement, Psychology , Animals , Behavior, Addictive/metabolism , Behavior, Addictive/psychology , Cocaine/pharmacology , Cocaine-Related Disorders/metabolism , Cocaine-Related Disorders/psychology , Male , Rats , Rats, Sprague-Dawley , Self Administration , Transcription, Genetic/drug effects , Transcription, Genetic/physiology , Up-Regulation/drug effects , Up-Regulation/physiology
2.
J Neurosci ; 28(15): 3947-57, 2008 Apr 09.
Article in English | MEDLINE | ID: mdl-18400894

ABSTRACT

Although transcriptional dysregulation is a critical pathogenic mechanism in Huntington's disease (HD), it is still not known how mutant huntingtin causes it. Here we show that alteration of histone monoubiquitylation is a key mechanism. Disrupted interaction of huntingtin with Bmi-1, a component of the hPRC1L E3 ubiquitin ligase complex, increases monoubiquityl histone H2A (uH2A) levels in a cell culture model of HD. Genes with expression that is repressed in transgenic R6/2 mouse brain have increased uH2A and decreased uH2B at their promoters, whereas actively transcribed genes show the opposite pattern. Reduction in uH2A reverses transcriptional repression and inhibits methylation of histone H3 at lysine 9 in cell culture. In contrast, reduction in uH2B induces transcriptional repression and inhibits methylation of histone H3 at lysine 4. This is the first report to demonstrate hPRC1L as a huntingtin-interacting histone modifying complex and a crucial role for histone monoubiquitylation in mammalian brain gene expression, which broadens our understanding of histone code. These findings also provide a rationale for targeting histone monoubiquitylation for therapy in HD.


Subject(s)
Histones/metabolism , Mutation , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/metabolism , Nuclear Proteins/genetics , Nuclear Proteins/metabolism , Transcription, Genetic , Ubiquitination , Animals , Brain/metabolism , Cells, Cultured , Histones/genetics , Huntingtin Protein , Huntington Disease/genetics , Huntington Disease/metabolism , Methylation , Mice , Mice, Transgenic , Polycomb Repressive Complex 1 , Proto-Oncogene Proteins/metabolism , Repressor Proteins/metabolism
3.
Am J Pathol ; 170(5): 1695-712, 2007 May.
Article in English | MEDLINE | ID: mdl-17456775

ABSTRACT

Axonal damage secondary to inflammation is likely the substrate of chronic disability in multiple sclerosis and is found in the animal model of experimental autoimmune encephalomyelitis (EAE). Wld(s) mice have a triplication of the fusion gene Ube4b/Nmnat and a phenotype of axon protection. Wld(s) mice develop an attenuated disease course of EAE, with decreased demyelination, reduced axonal pathology, and decreased central nervous system (CNS) macrophage and microglial accumulation. We show that attenuated disease in Wld(s) mice was associated with robust constitutive expression of the nonsignaling CD200 molecule on neurons in the CNS compared with control mice. CD200 interacts with its signaling receptor CD200R, which we found to be expressed on microglia, astrocytes, and oligodendrocytes at similar levels in control and Wld(s) mice. Administration of blocking anti-CD200 antibody to Wld(s) mice abrogated disease attenuation and was associated with increased CNS inflammation and neurodegeneration. In vitro, Wld(s) neuronal cultures were protected from microglial-induced neurotoxicity compared with control cultures, but protection was abrogated by anti-CD200 antibody. The CD200-CD200R pathway plays a critical role in attenuating EAE and reducing inflammation-mediated damage in the CNS. Strategies that up-regulate the expression of CD200 in the CNS or molecules that ligate the CD200R may be relevant as neuroprotective strategies in multiple sclerosis.


Subject(s)
Antigens, CD/biosynthesis , Encephalomyelitis, Autoimmune, Experimental/metabolism , Encephalomyelitis, Autoimmune, Experimental/pathology , Inflammation/pathology , Nerve Degeneration/physiopathology , Neurons/metabolism , Animals , Blotting, Western , Cell Proliferation , Demyelinating Diseases/metabolism , Demyelinating Diseases/pathology , Encephalomyelitis, Autoimmune, Experimental/immunology , Enzyme-Linked Immunosorbent Assay , Female , Flow Cytometry , Fluorescent Antibody Technique , Immunoprecipitation , Inflammation/immunology , Inflammation/metabolism , Interleukin-6/metabolism , Interleukins/metabolism , Macrophage Activation/immunology , Membrane Glycoproteins/metabolism , Mice , Microscopy, Confocal , Microscopy, Electron, Transmission , Nerve Degeneration/immunology , Neuroglia/metabolism , Neurons/pathology , Spinal Cord/pathology
4.
Hum Mol Genet ; 16(11): 1293-306, 2007 Jun 01.
Article in English | MEDLINE | ID: mdl-17409194

ABSTRACT

Transcriptional dysregulation plays a major role in the pathology of Huntington's disease (HD). However, the mechanisms causing selective downregulation of genes remain unknown. Histones regulate chromatin structure and thereby control gene expression; recent studies have demonstrated a therapeutic role for histone deacetylase (HDAC) inhibitors in polyglutamine diseases. This study demonstrates that despite no change in overall acetylated histone levels, histone H3 is hypo-acetylated at promoters of downregulated genes in R6/2 mice, ST14a and STHdh cells, as demonstrated by in vivo chromatin immunoprecipitation. In addition, HDAC inhibitor treatment increases association of acetylated histones with downregulated genes and corrects mRNA abnormalities. In contrast, there is a decrease in mRNA levels in wild-type cells following treatment with a histone acetyltransferase inhibitor. Although changes in histone acetylation correlate with decreased gene expression, histone hypo-acetylation may be a late event, as no hypo-acetylation is observed in 4-week-old R6/2 mice. Nevertheless, treatment with HDAC inhibitors corrects mRNA abnormalities through modification of histone proteins and may prove to be of therapeutic value in HD.


Subject(s)
Disease Models, Animal , Down-Regulation/physiology , Histones/metabolism , Huntington Disease/genetics , Huntington Disease/metabolism , Acetylation , Animals , Mice , Mice, Inbred C57BL , Mice, Transgenic
SELECTION OF CITATIONS
SEARCH DETAIL
...