Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Biophys J ; 115(2): 230-241, 2018 07 17.
Article in English | MEDLINE | ID: mdl-29933888

ABSTRACT

One of the fundamental features that govern the cooperativity of multiple dyneins during cargo trafficking in cells is the spatial distribution of these dyneins on the cargo. Geometric considerations and recent experiments indicate that clustered distributions of dyneins are required for effective cooperation on micron-sized cargos. However, very little is known about the spatial distribution of dyneins and their cooperativity on smaller cargos, such as vesicles or endosomes <200 nm in size, which are not amenable to conventional immunostaining and optical trapping methods. In this work, we present evidence that dyneins can dynamically be clustered on endosomes in response to load. Using a darkfield imaging assay, we measured the repeated stalls and detachments of retrograde axonal endosomes under load with <10 nm localization accuracy at imaging rates up to 1 kHz for over a timescale of minutes. A three-dimensional stochastic model was used to simulate the endosome motility under load to gain insights on the mechanochemical properties and spatial distribution of dyneins on axonal endosomes. Our results indicate that 1) the distribution of dyneins on endosomes is fluid enough to support dynamic clustering under load and 2) the detachment kinetics of dynein on endosomes differs significantly from the in vitro measurements possibly due to an increase in the unitary stall force of dynein on endosomes.


Subject(s)
Axons/metabolism , Dyneins/metabolism , Endosomes/metabolism , Molecular Imaging , Lab-On-A-Chip Devices
2.
Neurosci Lett ; 610: 110-6, 2016 Jan 01.
Article in English | MEDLINE | ID: mdl-26528790

ABSTRACT

The bidirectional transport of cargos along the thin axon is fundamental for the structure, function and survival of neurons. Defective axonal transport has been linked to the mechanism of neurodegenerative diseases. In this paper, we study the effect of the local axonal environment to cargo transport behavior in neurons. Using dual-color fluorescence imaging in microfluidic neuronal devices, we quantify the transport dynamics of cargos when crossing stationary organelles such as non-moving endosomes and stationary mitochondria in the axon. We show that the axonal cargos tend to slow down, or pause transiently within the vicinity of stationary organelles. The slow-down effect is observed in both retrograde and anterograde transport directions of three different cargos (TrkA, lysosomes and TrkB). Our results agree with the hypothesis that bulky axonal structures can pose as steric hindrance for axonal transport. However, the results do not rule out the possibility that cellular mechanisms causing stationary organelles are also responsible for the delay in moving cargos at the same locations.


Subject(s)
Axonal Transport , Neurons/metabolism , Organelles/metabolism , Animals , Embryo, Mammalian/cytology , Ganglia, Spinal/cytology , Lysosomes/metabolism , Mitochondria/metabolism , Primary Cell Culture , Rats, Sprague-Dawley , Receptor, trkA/metabolism , Receptor, trkB/metabolism
3.
Sci Rep ; 5: 18059, 2015 Dec 10.
Article in English | MEDLINE | ID: mdl-26656461

ABSTRACT

Dynein-dependent transport of organelles from the axon terminals to the cell bodies is essential to the survival and function of neurons. However, quantitative knowledge of dyneins on axonal organelles and their collective function during this long-distance transport is lacking because current technologies to do such measurements are not applicable to neurons. Here, we report a new method termed nanoparticle-assisted optical tethering of endosomes (NOTE) that made it possible to study the cooperative mechanics of dyneins on retrograde axonal endosomes in live neurons. In this method, the opposing force from an elastic tether causes the endosomes to gradually stall under load and detach with a recoil velocity proportional to the dynein forces. These recoil velocities reveal that the axonal endosomes, despite their small size, can recruit up to 7 dyneins that function as independent mechanical units stochastically sharing load, which is vital for robust retrograde axonal transport. This study shows that NOTE, which relies on controlled generation of reactive oxygen species, is a viable method to manipulate small cellular cargos that are beyond the reach of current technology.


Subject(s)
Axonal Transport/physiology , Axons/metabolism , Axons/physiology , Dyneins/metabolism , Endosomes/metabolism , Endosomes/physiology , Nanoparticles/administration & dosage , Cells, Cultured , Neurons/metabolism , Neurons/physiology
4.
Biophys J ; 108(11): 2691-703, 2015 Jun 02.
Article in English | MEDLINE | ID: mdl-26039170

ABSTRACT

We present a detailed motion analysis of retrograde nerve growth factor (NGF) endosomes in axons to show that mechanical tugs-of-war and intracellular motor regulation are complimentary features of the near-unidirectional endosome directionality. We used quantum dots to fluorescently label NGF and acquired trajectories of retrograde quantum-dot-NGF-endosomes with <20-nm accuracy at 32 Hz in microfluidic neuron cultures. Using a combination of transient motion analysis and Bayesian parsing, we partitioned the trajectories into sustained periods of retrograde (dynein-driven) motion, constrained pauses, and brief anterograde (kinesin-driven) reversals. The data shows many aspects of mechanical tugs-of-war and multiple-motor mechanics in NGF-endosome transport. However, we found that stochastic mechanical models based on in vitro parameters cannot simulate the experimental data, unless the microtubule-binding affinity of kinesins on the endosome is tuned down by 10 times. Specifically, the simulations suggest that the NGF-endosomes are driven on average by 5-6 active dyneins and 1-2 downregulated kinesins. This is also supported by the dynamics of endosomes detaching under load in axons, showcasing the cooperativity of multiple dyneins and the subdued activity of kinesins. We discuss the possible motor coordination mechanism consistent with motor regulation and tugs-of-war for future investigations.


Subject(s)
Axonal Transport , Molecular Motor Proteins/metabolism , Nerve Growth Factor/metabolism , Animals , Bayes Theorem , Biomechanical Phenomena , Down-Regulation , Dyneins/metabolism , Endosomes/metabolism , Ganglia, Spinal/cytology , Kinesins/metabolism , Mice , Models, Neurological , Nerve Growth Factor/chemistry , Neurons/cytology , Quantum Dots/chemistry , Stochastic Processes , Temperature , Time Factors
5.
ACS Synth Biol ; 4(10): 1124-35, 2015 Oct 16.
Article in English | MEDLINE | ID: mdl-25985220

ABSTRACT

The photoreceptor cryptochrome 2 (CRY2) has become a powerful optogenetic tool that allows light-inducible manipulation of various signaling pathways and cellular processes in mammalian cells with high spatiotemporal precision and ease of application. However, it has also been shown that the behavior of CRY2 under blue light is complex, as the photoexcited CRY2 can both undergo homo-oligomerization and heterodimerization by binding to its dimerization partner CIB1. To better understand the light-induced CRY2 activities in mammalian cells, this article systematically characterizes CRY2 homo-oligomerization in different cellular compartments, as well as how CRY2 homo-oligomerization and heterodimerization activities affect each other. Quantitative analysis reveals that membrane-bound CRY2 has drastically enhanced oligomerization activity compared to that of its cytoplasmic form. While CRY2 homo-oligomerization and CRY2-CIB1 heterodimerization could happen concomitantly, the presence of certain CIB1 fusion proteins can suppress CRY2 homo-oligomerization. However, the homo-oligomerization of cytoplasmic CRY2 can be significantly intensified by its recruitment to the membrane via interaction with the membrane-bound CIB1. These results contribute to the understanding of the light-inducible CRY2-CRY2 and CRY2-CIB1 interaction systems and can be used as a guide to establish new strategies utilizing the dual optogenetic characteristics of CRY2 to probe cellular processes.


Subject(s)
Cryptochromes/chemistry , Light , Optogenetics/methods , Animals , COS Cells , Chlorocebus aethiops , Dimerization , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...