Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Bioorg Med Chem Lett ; 26(4): 1310-3, 2016 Feb 15.
Article in English | MEDLINE | ID: mdl-26786699

ABSTRACT

A series of novel α-amino phosphonate derivatives containing a uracil moiety 3a-3l were designed and synthesized by a Lewis acid (magnesium perchlorate) catalyzed the Kabachnik-Fields reaction. The bioassays {in vitro, in vivo [Glass House 1 (GH1) and Glass House 2 (GH2)]} showed that most of compounds 3 exhibited excellent and selective herbicidal activities; for example, in GH1 test, compounds 3b, 3d, 3f, 3h and 3j showed excellent and wide spectrum herbicidal activities at the dose of 1000 g/ha, and compounds 3b and 3j exhibited 100% inhibition activities against the four plants in both post- and pre-emergence treatments. Moreover, most of compounds 3 showed higher inhibition against Amaranthus retroflexus and Digitaria sanguinalis than Glyphosate did in pre-emergence treatment. In GH2 test, the four compounds (3b, 3d, 3h and 3j) exhibited 100% inhibition against Solanum nigrum, Amaranthus retroflexus and Ipomoea hederacea in post-emergence treatment and displayed 100% inhibition against Solanum nigrum, Amaranthus retroflexus in pre-emergence treatment at the rate of 250 g/ha, and compound 3b showed the best and broad spectrum herbicidal activities against the six test plants. However, the four compounds displayed weaker herbicidal activities against Lolium perenne and Echinochloa crus-galli than the other four plants at the rate of 250 g/ha in both pre- and post-emergence treatments. So, compounds 3 can be used as a lead compound for further structure optimization for developing potential selective herbicidal agent. Their preliminary structure-activity relationships were also investigated.


Subject(s)
Herbicides/chemical synthesis , Phosphorous Acids/chemistry , Uracil/chemistry , Amaranthus/drug effects , Digitaria/drug effects , Glycine/analogs & derivatives , Glycine/toxicity , Herbicides/chemistry , Herbicides/toxicity , Ipomoea/drug effects , Phosphorous Acids/chemical synthesis , Phosphorous Acids/toxicity , Solanum nigrum/drug effects , Structure-Activity Relationship , Glyphosate
2.
J Agric Food Chem ; 63(32): 7219-29, 2015 Aug 19.
Article in English | MEDLINE | ID: mdl-26222653

ABSTRACT

To find novel high-activity and low-toxicity herbicide lead compounds with novel herbicidal mode of action, series of novel α-amino phosphonate derivatives containing a pyrimidinyl moiety, I, II, III, and IV, were designed and synthesized by Lewis acid (magnesium perchlorate) catalyzed Mannich-type reaction of aldehydes, amines, and phosphites. Their structures were clearly identified by spectroscopy data (IR, (1)H NMR, (31)P NMR, EI-MS) and elemental analyses. The bioassay [in vitro, in vivo (GH1 and GH2)] showed that most compounds I exhibited good herbicidal activities; for example, the activities of compounds Ib, Ic, Ig, Ii, Ik, and Im were as good as the positive control herbicides (acetochlor, atrazine, mesotrione, and glyphosate). However, their structural isomers II and III and analogues IV did not display any herbicidal activities in vivo, although some of them possessed selective inhibitory activity against Arabidopsis thaliana in vitro. Interestingly, it was found that compounds IVs, IVt, and IVl showed selective insecticidal activities against Aphis species or Plutella xylostella, respectively. Their preliminary herbicidal mode of action and structure-activity relationships were also studied.


Subject(s)
Herbicides/chemistry , Herbicides/pharmacology , Organophosphonates/chemistry , Pyrimidines/chemistry , Herbicides/chemical synthesis , Molecular Structure , Plant Weeds/drug effects , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL
...