Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Materials (Basel) ; 15(13)2022 Jun 22.
Article in English | MEDLINE | ID: mdl-35806526

ABSTRACT

The spills of crude oil and other organic chemicals are common around the world, resulting in severe damage to the environment and ecosystem. Therefore, developing low-cost and eco-friendly absorption material is in urgent need. In this study, we report a superhydrophobic and oleophilic porous material using biomass cuttlebone as the scaffold. A layer of polydopamine is grafted on the cuttlebone as the adhesion layer between the cuttlebone and the superhydrophobic coating. The in situ grown silica micro/nanoparticles on top of the adhesion layer provide the anchoring spots for grafting the fluorinated hydrocarbon and a rough topography for realizing superhydrophobicity. The static water contact angle of the superhydrophobic cuttlebone reaches 152°, and its oil contact angle is ~0°. The excellent oil-water separation efficiency of the prepared superhydrophobic cuttlebone is demonstrated using high-density oil/water mixtures and low-density oil/water mixtures.

2.
Bioorg Med Chem Lett ; 30(15): 127260, 2020 08 01.
Article in English | MEDLINE | ID: mdl-32527454

ABSTRACT

Natural products are very important sources for the development of new pesticides. Osthole, derived from many medical plants such as Cnidium, Angelica and Citrus plants, is a naturally occurring coumarin compound. To discover the new natural products-based insecticides, thirty-one osthole-based esters containing O-acyl-hydroxylamine groups were prepared, and their structures were identified by different spectral analysis methods. Derivatives A7, A17, A20 and A25 displayed more potent growth inhibitory (GI) activity than the botanical insecticide, toosendanin. Over half of target osthole derivatives had more effective larvicidal effect on P. xylostella than toosendanin. Among all title derivatives, compound A18 displayed more pronounced larvicidal activity (LC50 = 0.64 µmol mL-1) when compared with toosendanin (LC50 = 0.94 µmol mL-1). Some interesting results of structure-activity relationships (SARs) of these osthole derivatives were also discussed. In addition, the hemolysis and cytotoxicity assays indicated that these osthole derivatives showed very low toxicity toward normal mammalian cells.


Subject(s)
Biological Products/pharmacology , Coumarins/pharmacology , Insecticides/pharmacology , Lepidoptera/drug effects , Angelica/chemistry , Animals , Biological Products/chemistry , Cell Line , Cell Survival/drug effects , Citrus/chemistry , Cnidium/chemistry , Coumarins/chemistry , Dose-Response Relationship, Drug , Insecticides/chemistry , Molecular Structure , Rats , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL