Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
J Anim Sci ; 93(1): 298-305, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25568378

ABSTRACT

Three studies were conducted to test the hypothesis that dietary spray-dried plasma (SDP) might improve pregnancy rate by ameliorating inflammation, using mice in an experimental model that produces a low pregnancy rate. Mated female mice (C57BL/6 strain) were purchased and shipped from a vendor (Bar Harbor, ME) to the university facility (Urbana, IL) on the day the vaginal plug was found (gestation day [GD] 1), arriving at the laboratory on GD 3 after 2 d transport by air and ground. Mice (Exp. 1: n = 250, 16.0 ± 1.2 g BW; Exp. 2: n = 202, 16.2 ± 1.2 g BW; Exp. 3: n = 156, 16.4 ± 1.1 g BW) were housed in individual cages and randomly assigned to dietary treatments (Exp. 1: 0 [CON] and 8% SDP in the diet, ≥ 90 mice/diet; Exp. 2: 0, 1, 2, 4, and 8% SDP in the diet, ≥ 40 mice/diet; Exp. 3: 0, 1, and 8% SDP in the diet, 48 mice/diet) fed from arrival. In Exp. 1 and 2, pregnancy of each mouse was determined on GD 17 based on BW, shape of abdomen, and inspection postmortem, and maternal growth performance from GD 3 to 17 was measured. On GD 19, pregnant mice in Exp. 2 were euthanized to measure number of fetuses and fetal and placental weights. Pregnancy rates in CON were low in both Exp. 1 (11%) and Exp. 2 (7%). The SDP consistently and markedly increased (P < 0.05) pregnancy rates in both Exp. 1 (49%) and Exp. 2 (35-43%) compared with the CON. In Exp. 3, 12 randomly selected mice were euthanized immediately after they arrived as an initial group. From GD 4 to 7, randomly selected mice were also euthanized each day (12 mice/diet). After euthanasia, the abdominal cavity was opened to check pregnancy by uterine inspection and to collect blood and uterus samples for immune measurements. The SDP increased (P < 0.05; 40 vs. 15%) pregnancy rate compared with the CON. Concentrations of indicators of inflammation and stress (uterine TNF-α and IFN-γ, and serum TNF-α, C-reactive protein, and cortisol) were greatest (P < 0.05) and an anti-inflammatory cytokine (TGF-ß1) was lowest (P < 0.05) soon after arrival, on GD 3 or 4. The SDP decreased (P < 0.05) the uterine concentrations of TNF-α and IFN-γ, and serum TNF-α, C-reactive protein, and cortisol, compared with the CON, but increased (P < 0.05) the uterine concentration of TGF-ß1. In conclusion, dietary SDP improves the low pregnancy rates in this model, apparently by attenuating inflammation.


Subject(s)
Animal Feed/analysis , Diet , Inflammation/prevention & control , Plasma , Pregnancy Rate , Animal Nutritional Physiological Phenomena , Animals , C-Reactive Protein , Cytokines , Female , Hydrocortisone/blood , Mice , Mice, Inbred C57BL , Ovum , Pregnancy
2.
J Anim Sci ; 92(8): 3426-40, 2014 Aug.
Article in English | MEDLINE | ID: mdl-24948650

ABSTRACT

This study was conducted to characterize the effects of feeding 3 plant extracts on gene expression in ileal mucosa of weaned pigs. Weaned pigs (n = 32, 6.3 ± 0.2 kg BW, and 21 d old) were housed in individual pens for 9 d and fed 4 different diets: a nursery basal diet as control diet, basal diet supplemented with 10 mg/kg of capsicum oleoresin, garlic botanical, or turmeric oleoresin. Results reported elsewhere showed that the plant extracts reduced diarrhea and increased growth rate of weaning pigs. Total RNA (4 pigs/treatment) was extracted from ileal mucosa of pigs at d 9. Double-stranded cDNA was amplified, labeled, and further hybridized to the microarray. Microarray data were analyzed in R using packages from the Bioconductor project. Differential gene expression was tested by fitting a mixed linear model equivalent to ANOVA using the limma package. Bioinformatics analysis was conducted by DAVID Bioinformatics Resources. Three pairwise comparisons were used to compare each plant extract diet with the control diet. Quantitative real time PCR was applied to verify the mRNA expression detected by microarray. Compared with the control diet, feeding capsicum oleoresin altered (P < 0.05) the expression of 490 genes (280 up, 210 down), and feeding garlic botanical altered (P < 0.05) the expression of 64 genes (33 up, 31 down), while feeding turmeric oleoresin altered (P < 0.05) the expression of 327 genes (232 up, 95 down). Compared with the control diet, feeding capsicum oleoresin and turmeric oleoresin increased [Expression Analysis Systematic Explorer (EASE) < 0.05] the expression of genes related to integrity of membranes and tight junctions, indicating enhanced gut mucosa health, but decreased (EASE < 0.05) the cell cycle pathway. Feeding each of the 3 plant extracts enhanced (EASE < 0.05) the expression of genes associated with immune responses, indicating that feeding these plant extracts may stimulate the immune responses of pigs in the normal conditions. In conclusion, plant extracts regulated the expression of genes in ileal mucosa of pigs, perhaps providing benefits by enhancing the gut mucosa health and stimulating the immune system.


Subject(s)
Curcuma/chemistry , Garlic/chemistry , Gene Expression Regulation/drug effects , Intestinal Mucosa/metabolism , Plant Extracts/pharmacology , Sus scrofa/metabolism , Animals , Diarrhea/prevention & control , Dietary Supplements , Microarray Analysis/veterinary , Swine , Transcriptome/drug effects
3.
J Anim Sci ; 92(5): 2050-62, 2014 May.
Article in English | MEDLINE | ID: mdl-24663182

ABSTRACT

This study was conducted to characterize the effects of infection with a pathogenic F-18 Escherichia coli and 3 different plant extracts on gene expression of ileal mucosa in weaned pigs. Weaned pigs (total = 64, 6.3 ± 0.2 kg BW, and 21-d old) were housed in individual pens for 15 d, 4 d before and 11 d after the first inoculation (d 0). Treatments were in a 2 × 4 factorial arrangement: with or without an F-18 E. coli challenge and 4 diets (a nursery basal, control diet [CON], 10 ppm of capsicum oleoresin [CAP], garlic botanical [GAR], or turmeric oleoresin [TUR]). Results reported elsewhere showed that the plant extracts reduced diarrhea in challenged pigs. Total RNA (4 pigs/treatment) was extracted from ileal mucosa of pigs at d 5 post inoculation. Double-stranded cDNA was amplified, labeled, and further hybridized to the microarray, and data were analyzed in R. Differential gene expression was tested by fitting a mixed linear model in a 2 × 4 factorial ANOVA. Bioinformatics analysis was conducted by DAVID Bioinformatics Resources 6.7 (DAVID; National Institute of Allergy and Infectious Diseases [NIAID, NIH], http://david.abcc.ncifcrf.gov). The E. coli infection altered (P < 0.05) the expression of 240 genes in pigs fed the CON (148 up- and 92 down-regulated). Compared with the infected CON, feeding CAP, GAR, or TUR altered (P < 0.05) the expression of 52 genes (18 up, 34 down), 117 genes (34 up- and 83 down-regulated), or 84 genes (16 up- and 68 down-regulated), respectively, often counteracting the effects of E. coli. The E. coli infection up-regulated (P < 0.05) the expression of genes related to the activation of immune response and complement and coagulation cascades, but down-regulated (P < 0.05) the expression of genes involved in protein synthesis and accumulation. Compared with the CON, feeding CAP and GAR increased (P < 0.05) the expression of genes related to integrity of membranes in infected pigs, indicating enhanced gut mucosa health. Moreover, feeding all 3 plant extracts reduced (P < 0.05) the expression of genes associated with antigen presentation or other biological processes of immune responses, indicating they attenuated overstimulation of immune responses caused by E. coli. These findings may explain why diarrhea was reduced and clinical immune responses were ameliorated in infected pigs fed plant extracts. In conclusion, plant extracts altered the expression of genes in ileal mucosa of E. coli-infected pigs, perhaps leading to the reduction in diarrhea reported previously.


Subject(s)
Escherichia coli Infections/veterinary , Ileum/drug effects , Intestinal Mucosa/drug effects , Plant Extracts/therapeutic use , Swine Diseases/pathology , Transcriptome/drug effects , Animal Feed/analysis , Animal Nutritional Physiological Phenomena , Animals , Capsicum/chemistry , Curcuma/chemistry , Diet/veterinary , Dietary Supplements , Escherichia coli Infections/complications , Garlic/chemistry , Ileum/metabolism , Intestinal Mucosa/metabolism , Oligonucleotide Array Sequence Analysis , Plant Extracts/chemistry , Swine , Swine Diseases/drug therapy
4.
J Anim Sci ; 91(12): 5668-79, 2013 Dec.
Article in English | MEDLINE | ID: mdl-24126276

ABSTRACT

A study was conducted to evaluate the effects of 3 different plant extracts on growth performance and immune responses of weaned pigs experimentally infected with porcine reproductive and respiratory syndrome virus (PRRSV). A total of 64 weaned pigs (7.8 ± 0.3 kg BW), free of PRRSV, were randomly allotted to 1 of 8 treatments in a 2 × 4 factorial arrangement with a randomized complete block design. Pigs were blocked by initial BW. Sex and ancestry were equalized across treatments. The first factor was with or without PRRSV challenge (intranasal dose; 10(5) 50% tissue culture infective dose). The second factor was represented by 4 diets: a nursery basal diet (CON), 10 mg/kg capsicum oleoresin (CAP), garlic botanical (GAR), or turmeric oleoresin (TUR). Pigs were housed in disease containment chambers for 28 d [14 d before and after the inoculation (d 0)]. Blood was collected on d 0, 7, and 14 to measure the total and differential white blood cells (WBC), and serum was collected to measure viral load by quantitative PCR, PRRSV antibody titer, tumor necrosis factor-α (TNF-α), IL-1ß, C-reactive protein (CRP), and haptoglobin (Hp) by ELISA. In the unchallenged group, all piglets were PRRSV negative during the overall period postinoculation. All data were analyzed using PROC MIXED of SAS. The PRRSV challenge decreased (P < 0.01) ADG, ADFI, and G:F from d 0 to 14. Feeding TUR improved G:F of the PRRSV-infected pigs from d 0 to 14. The numbers of WBC and neutrophils were decreased (P < 0.05) by PRRSV on d 7 but increased (P < 0.05) by PRRSV on d 14, indicating the PRRSV-infected pigs undergo a stage of weak immune responses. Feeding GAR increased (P < 0.05) B cells and CD8+ T cells of PRRSV-infected pigs compared with the CON. Furthermore, the PRRSV challenge increased (P < 0.05) serum viral load, TNF-α, and IL-1ß on d 7 and serum viral load, CRP, and Hp on d 14, but feeding plant extracts to PRRSV-infected pigs reversed (P < 0.05) this increase. Infection with PRRSV increased (P < 0.05) rectal temperature of pigs on d 7, 9, and 11, but PRRSV-infected pigs fed plant extracts had lower rectal temperature (P < 0.05) than pigs fed the CON, indicating feeding plant extracts delayed the fever caused by PRRSV infection. In conclusion, results indicate that supplementation with plant extracts reduces the adverse effects of PRRSV by improving the immune responses of pigs, and the 3 plant extracts tested here show different effects. Supplementation with TUR improved feed efficiency of pigs challenged with PRRSV.


Subject(s)
Diet/veterinary , Plant Extracts/pharmacology , Porcine Reproductive and Respiratory Syndrome/drug therapy , Acute-Phase Proteins/genetics , Acute-Phase Proteins/metabolism , Animal Feed/analysis , Animals , Antibodies, Viral/blood , Cytokines/blood , Cytokines/genetics , Cytokines/metabolism , Dietary Supplements , Female , Gene Expression Regulation , Male , Plant Extracts/chemistry , Porcine Reproductive and Respiratory Syndrome/immunology , Porcine respiratory and reproductive syndrome virus , Swine , Viral Load
5.
J Anim Sci ; 91(11): 5294-306, 2013 Nov.
Article in English | MEDLINE | ID: mdl-24045466

ABSTRACT

A study was conducted to evaluate the effects of 3 different plant extracts on diarrhea, immune response, intestinal morphology, and growth performance of weaned pigs experimentally infected with a pathogenic F-18 Escherichia coli (E. coli). Sixty-four weaned pigs (6.3±0.2 kg BW, and 21 d old) were housed in individual pens in disease containment chambers for 15 d: 4 d before and 11 d after the first inoculation (d 0). Treatments were in a 2×4 factorial arrangement: with or without an F-18 E. coli challenge (toxins: heat-labile toxin, heat-stable toxin b, and Shiga-like toxin 2; 10(10) cfu/3 mL oral dose; daily for 3 d from d 0) and 4 diets [a nursery basal diet (CON) or 10 ppm of capsicum oleoresin, garlic botanical, or turmeric oleoresin]. The growth performance was measured on d 0 to 5, 5 to 11, and 0 to 11. Diarrhea score (1, normal, to 5, watery diarrhea) was recorded for each pig daily. Frequency of diarrhea was the percentage of pig days with a diarrhea score of 3 or greater. Blood was collected on d 0, 5, and 11 to measure total and differential white blood cell counts and serum tumor necrosis factor (TNF)-α, IL-10, transforming growth factor (TGF)-ß, C-reactive protein, and haptoglobin. On d 5 and 11, half of the pigs were euthanized to measure villi height and crypt depth of the small intestine and macrophage and neutrophil number in the ileum. The E. coli infection increased (P<0.05) diarrhea score, frequency of diarrhea, white blood cell counts, serum TNF-α and haptoglobin, and ileal macrophages and neutrophils but reduced (P<0.05) villi height and the ratio of villi height to crypt depth of the small intestine on d 5. In the challenged group, feeding plant extracts reduced (P<0.05) average diarrhea score from d 0 to 2 and d 6 to 11 and frequency of diarrhea and decreased (P<0.05) TNF-α and haptoglobin on d 5, white blood cell counts and neutrophils on d 11, and ileal macrophages and neutrophils on d 5. Feeding plant extracts increased (P<0.05) ileal villi height on d 5 but did not affect growth performance compared with the CON. In the sham group, feeding plant extract also reduced (P<0.05) diarrhea score, frequency of diarrhea, and ileal macrophages compared with the CON. In conclusion, the 3 plant extracts tested reduced diarrhea and inflammation caused by E. coli infection, which may be beneficial to pig health.


Subject(s)
Diarrhea/veterinary , Escherichia coli Infections/veterinary , Escherichia coli/classification , Plant Extracts/pharmacology , Swine Diseases/drug therapy , Animal Feed/analysis , Animal Nutritional Physiological Phenomena , Animals , Diarrhea/drug therapy , Diarrhea/microbiology , Diet/veterinary , Escherichia coli Infections/drug therapy , Escherichia coli Infections/immunology , Escherichia coli Infections/microbiology , Swine , Swine Diseases/immunology , Swine Diseases/microbiology , Weaning
6.
J Anim Sci ; 90(12): 4408-13, 2012 Dec.
Article in English | MEDLINE | ID: mdl-23100581

ABSTRACT

An experiment involving 854 crossbred pigs (20 replicate pens of 4 to 8 pigs per pen) was conducted at 8 experiment stations to determine the effects of acids in nursery pig diets and their inclusion amounts on growth performance using diets and weaning ages typical of those used in the United States commercial pork industry. Diets were formulated to have constant a ME and contain 1.45, 1.45, and 1.30% standardized ileal digestible Lys for phases 1, 2, and 3, respectively. The basal diets were supplemented with various types and concentrations of acid at the expense of corn (Zea mays). Treatment diets included 0% acid (control), 0.1 or 0.2% phosphoric acid, 1 or 2% organic acids, and 0.1% phosphoric acid plus 1% organic acids with or without an antibiotic. The organic acids consisted of 50% citric acid and 50% fumaric acid by weight. All but the final diet contained the antibiotic carbadox. All diets contained 3,000 mg of Zn/kg diet from zinc oxide during phases 1 and 2 and had limited acid buffering capacity, ranging from 142, 127, and 122 mEq/kg of feed for phases 1, 2, and 3, respectively. At each participating station, pigs were randomly allotted to dietary treatments on the basis of their initial BW. Sex and ancestry were equally distributed across the treatments. Results indicated that treatment effects on pig performance were observed in phases 1 and 2 but not in phase 3. In phase 1, ADG of pigs fed 0.2% phosphoric acid was greater than that of pigs fed the combination of acids with no antibiotic (P = 0.041). In phase 2, pigs fed treatments containing an antibiotic had a greater ADG than those fed the combination of acids without antibiotic (P < 0.05). Addition of acids to diets did not affect growth performance during any phase or the overall period. Over the 4-wk study, growth rate was slowest on the treatment without antibiotic, with specific differences that were often statistically significant (P < 0.05). In summary, under the conditions of this experiment, the acid treatments had no effect but the antibiotic improved growth performance.


Subject(s)
Acids/pharmacology , Animal Feed/analysis , Diet/veterinary , Swine/growth & development , Acids/chemistry , Animal Nutritional Physiological Phenomena , Animals , Buffers , Calcium/chemistry , Female , Hydrogen-Ion Concentration , Male , Phosphorus/chemistry
7.
J Anim Sci ; 90(13): 4916-24, 2012 Dec.
Article in English | MEDLINE | ID: mdl-22829618

ABSTRACT

Three experiments were conducted to evaluate effects of rice and other cereal grains on growth performance and health of weanling pigs. Pigs (1,008 in Exp. 1 and 3 and 1,004 in Exp. 2; 21 d old) with an initial BW of 5.8 ± 1.0 kg were used. Pigs in each experiment were divided into 3 BW blocks (heavy, medium, or light) in each of 4 rooms, resulting in 12 blocks per experiment. Each pen within a block had 20 or 21 pigs and equal sex distribution. Pens were allotted to dietary treatments in a randomized complete block design. Pigs were fed in a 4-phase feeding program with Phases 1 and 2 of 1 wk each and Phases 3 and 4 of 2 wk each. Diets were formulated to meet the same nutritional standards within each phase. In Exp. 1, effects of different cereal grains on pig performance and removal rate (mortality plus morbidity) were investigated. Pigs were fed 4 diets based on corn, barley, rolled oats, or rice as the only cereal grain. Over a 6-wk period, the ADG of pigs fed rice was greater (P < 0.01) than those pigs fed barley but not different from those pigs fed corn or rolled oats. Pigs fed corn or rice did not differ in ADFI, which was greater (P < 0.05) than those pigs fed barley. The overall removal rate of pigs fed rice or barley was reduced as compared with those pigs fed rolled oats (P < 0.05), and tended to be less than those pigs fed corn (P = 0.075). Experiment 2 was conducted to determine if the benefits observed in Exp. 1 could be obtained by feeding rice for less than 6 wk. Treatments included rice diets fed for 0, 1, 2, or 4 wk before changing to corn diets. All pigs received a common diet during wk 5 and 6. Pig performance and antibiotic treatments did not differ among dietary treatments. However, pigs fed rice for 1, 2, or 4 wk had a reduced overall removal rate (P < 0.05) compared with those fed corn. Experiment 3 was conducted to investigate if the amount of rice fed in wk 1 could be reduced without reducing pig performance. Rice replaced 0, 50, 75, or 100% of corn in Phase 1 diets. All pigs received a common diet from wk 2 to 6. No differences in pig performance or antibiotic treatments among dietary treatments were observed. However, pigs fed the diet with 100% rice had a reduced (P = 0.055) overall removal rate compared with pigs fed the corn diet. Generally, rice and corn improve pig performance as compared with barley. Rice can substitute for corn in nursery diets without detriment to pig performance and substantially reduces pig removals, even when fed for only 1 wk immediately after weaning.


Subject(s)
Animal Feed/analysis , Animal Husbandry , Diet/veterinary , Edible Grain/chemistry , Swine/growth & development , Animals , Anti-Bacterial Agents/therapeutic use , Female , Male , Oryza/chemistry , Swine/microbiology , Swine Diseases/drug therapy
8.
J Anim Sci ; 90(9): 3080-7, 2012 Sep.
Article in English | MEDLINE | ID: mdl-22585787

ABSTRACT

Four experiments were conducted to evaluate the nutrient contributions and physiological health benefits of spray-dried egg (SDE) containing only unfertilized eggs as a protein source in nursery pig diets. In all experiments, all diets were formulated to the same ME and Lys content, and each pen within a block (by BW) housed the same number of barrows and gilts. In Exp. 1 and 2 (168 and 140 pigs, respectively; 5 kg BW; 16 d old; 14 replicates/experiment), conducted at a university farm, treatments were with or without 5% SDE in a nursery control diet, which included antibiotics and zinc oxide. Pigs were fed for 10 d after weaning to measure ADG, ADFI, and G:F. The SDE increased (P < 0.05) ADG (Exp. 1: 243 vs. 204 g/d; Exp. 2: 204 vs. 181 g/d) and ADFI (Exp. 1: 236 vs. 204 g/d; Exp. 2: 263 vs. 253 g/d) compared with the control diet but did not affect G:F. In Exp. 3 (1,008 pigs; 5.2 kg BW; 20 d old; 12 replicates/treatment), conducted at a commercial farm, treatments were in a factorial arrangement of with or without SDE and high or low spray-dried plasma (SDP) in nursery diets, which included antibiotics and zinc oxide. Pigs were fed for 6 wk using a 4-phase feeding program (phases of 1, 1, 2, and 2 wk, respectively) with declining diet complexity to measure ADG, ADFI, G:F, removal rate (mortality plus morbidity), and frequency of medical treatments per pen and day (MED). The diets with the SDE increased (P < 0.05) ADFI during phase 1 only (180 vs. 164 g/d) compared with the diets without the SDE but did not affect growth performance during any other phases. The diets with SDE reduced MED during phase 1 (0.75% vs. 1.35%; P < 0.05) and the overall period (0.84% vs. 1.01%; P = 0.062) compared with the diets without the SDE but did not affect removal rate. In Exp. 4 (160 pigs; 6.7 kg BW; 21 d old; 10 replicates/treatment), conducted at a university farm to determine whether SDE can replace SDP, treatments were in a factorial arrangement of with or without SDP or SDE in nursery diets, which excluded antibiotics and zinc oxide. Pigs were fed for 6 wk using the same schedule used in Exp. 3 to measure ADG, ADFI, and G:F. The diets with SDE increased (P < 0.05) ADFI during phase 1 only (195 vs. 161 g/d) compared with the diets without SDE but did not affect growth performance during any other periods. In conclusion, SDE can be an efficacious protein and energy source in nursery pig diets and improves health and, in some instances, increases growth rate.


Subject(s)
Animal Feed/analysis , Diet/veterinary , Eggs/analysis , Swine/growth & development , Animal Nutritional Physiological Phenomena , Animals , Dietary Proteins , Female , Food Handling , Male
9.
J Anim Sci ; 90(8): 2774-83, 2012 Aug.
Article in English | MEDLINE | ID: mdl-22328722

ABSTRACT

Certain plant extracts are bioactive substances of some foods or traditional herbs, known to possess antioxidant, antibacterial, and perhaps immunoregulatory effects. This study investigated the in vitro anti-inflammatory effects of 7 plant extracts (anethol, capsicum oleoresin, carvacrol, cinnamaldehyde, eugenol, garlicon, and turmeric oleoresin) on porcine alveolar macrophages collected from weaned pigs (n = 6 donor pigs) by bronchoalveolar lavage. The experimental design for this assay was a 2 [with or without 1 µg lipopolysaccharide (LPS)/mL] × 5 (5 different amounts of each plant extract) factorial arrangements in a randomized complete block design. The application of plant extracts were 0, 25, 50, 100, and 200 µg/mL, except for cinnamaldehyde and turmeric oleoresin, which were 0, 2.5, 5, 10, and 20 µg/mL. The 3-(4,5-dimethylthiazol-2-yl)-2,5 diphenyltetrazolium bromide (MTT) assay was used to determine the number of live cells, Griess assay was applied to detect nitric oxide (NO) production, and ELISA was used to measure tumor necrosis factor-α (TNF-α), IL-1ß, transforming growth factor-ß (TGF-ß), and IL-10 in the cell culture supernatants of macrophages. The LPS increased (P < 0.001) the secretion of TNF-α, IL-1ß, and TGF-ß. Without LPS, anethol and capsicum oleoresin increased (linear, P < 0.001) cell viability of macrophages, whereas other plant extracts reduced (linear, P < 0.001) it. Anethol, capsicum oleoresin, and carvacrol enhanced (linear, P < 0.001) the cell proliferation of LPS-treated macrophages. Without LPS, anethol, capsicum oleoresin, cinnamaldehyde, or turmeric oleoresin stimulated TNF-α secretion, whereas all plant extracts except eugenol enhanced IL-1ß concentration in the supernatants of macrophages. However, all plant extracts suppressed (linear, P < 0.001) TNF-α, and all plant extracts except turmeric oleoresin decreased (linear, P < 0.05) IL-1ß secretion from LPS-treated macrophages. Anethol and capsicum oleoresin decreased (linear, P < 0.001) TGF-ß from macrophages in the absence of LPS, but the other plant extracts increased it. Anethol, capsicum oleoresin, and carvacrol also suppressed (linear, P < 0.001) TGF-ß from macrophages with LPS stimulation; the other plant extracts enhanced or did not affect it. The anti-inflammatory cytokine, IL-10, was not detected in any supernatants. Only very low amounts of NO were detected in the supernatants of macrophages. In conclusion, the TNF-α results indicate all plant extracts tested here may have anti-inflammatory effects to varying degrees.


Subject(s)
Anti-Inflammatory Agents/pharmacology , Macrophages, Alveolar/drug effects , Plant Extracts/pharmacology , Swine , Animals , Anti-Inflammatory Agents/chemistry , Cells, Cultured , Cytokines/genetics , Cytokines/metabolism , Dose-Response Relationship, Drug , Gene Expression Regulation/drug effects , Lipopolysaccharides/toxicity , Nitric Oxide , Plant Extracts/chemistry
10.
J Anim Sci ; 90(8): 2784-93, 2012 Aug.
Article in English | MEDLINE | ID: mdl-22367071

ABSTRACT

Mannan-containing products are capable of modulating immune responses in animals. However, different products may have diverse immunomodulation. The experiment was conducted to examine effects of mannan oligosaccharide (Actigen; ACT) on growth performance and serum concentrations of antibodies and inflammatory mediators in weanling pigs (Sus scrofa) experimentally infected with porcine reproductive and respiratory syndrome virus (PRRSV). A total of 32 PRRSV-negative pigs (3 wk old) were randomly assigned from within blocks to 1 of 4 treatments in a 2 by 2 factorial arrangement [2 types of diet: control (0%) and ACT addition (0.04%); and with and without PRRSV] in a randomized complete block design. Pigs were blocked by initial BW within sex. Ancestry was equalized across treatments. Pigs (8/treatment) were kept individually in each pen. After 2 wk of an 8-wk period of feeding the treatments, pigs received an intranasal inoculation of PRRSV or sham medium at 5 wk of age. Infection by PRRSV decreased ADG, ADFI, and G:F throughout the experiment (P < 0.01). Actigen did not affect ADG (P = 0.450), but decreased (P = 0.047) ADFI from 28 to 42 days postinoculation (DPI). During that time, ACT improved G:F in infected pigs but not in sham controls (interaction, P = 0.009). Dietary ACT did not affect viremia in infected pigs (P > 0.05), but increased PRRSV-specific antibody titer at 35 DPI (P = 0.042). Infection with PRRSV induced the febrile responses of pigs from 3 to 10 DPI (P < 0.001) with return to normal at 14 DPI. During the experimental period, the rectal temperature of pigs was found slightly elevated by ACT (P = 0.045). Infected pigs had greater serum concentrations of IL-1ß, tumor necrosis factor (TNF)-α, IL-12, interferon (IFN)-γ, IL-10, and haptoglobin (Hp) than sham controls (P < 0.001). These results indicate that PRRSV stimulated secretion of cytokines involved in innate, T-helper 1, and T-regulatory immune responses. Actigen tended to decrease the serum TNF-α concentration regardless of PRRSV (P = 0.058). The ACT × PRRSV interaction was significant for IL-1ß (P = 0.016), IL-12 (P = 0.026), and Hp (P = 0.047), suggesting that infected pigs fed ACT had greater serum concentrations of these mediators than those fed the control. The increases in IL-1ß and IL-12 may favorably promote innate and T-cell immune functions in infected pigs fed ACT. Feeding ACT may be useful as ACT is related to increased PRRSV antibody titers and G:F in infected pigs at certain times during infection.


Subject(s)
Antibodies, Viral/blood , Inflammation/metabolism , Mannans/therapeutic use , Porcine Reproductive and Respiratory Syndrome/drug therapy , Porcine respiratory and reproductive syndrome virus/physiology , Acute-Phase Proteins/genetics , Acute-Phase Proteins/metabolism , Animals , Cytokines/genetics , Cytokines/metabolism , Female , Gene Expression Regulation/drug effects , Male , Porcine Reproductive and Respiratory Syndrome/blood , Swine , Time Factors , Viremia
11.
J Anim Sci ; 90(2): 657-68, 2012 Feb.
Article in English | MEDLINE | ID: mdl-21984710

ABSTRACT

This study explored the hypothesis that mannan oligosaccharide (MOS) acts to reduce systemic inflammation in pigs by evaluating cytokine production of alveolar macrophages (AM) and serum cytokine concentrations. A total of 160 pigs were fed diets containing 0.2 or 0.4% MOS for 2 or 4 wk postweaning compared with control diets without MOS. Dietary MOS did not affect the serum concentration of tumor necrosis factor (TNF)-α and tended (P = 0.081) to increase that of IL-10. These cytokine concentrations also changed over time (P < 0.001). After 2-wk feeding of the control or MOS diets, AM were collected and stimulated ex vivo with lipopolysaccharide (LPS) or polyinosinic:polycytidylic acid (PLIC) as infection models. The LPS-stimulated AM from MOS-fed pigs (n = 12) secreted less TNF-α (P < 0.001) and more IL-10 (P = 0.026) than those from control-fed pigs (n = 6). However, dietary MOS had less effect on ex vivo TNF-α and IL-10 production by PLIC-stimulated AM (P = 0.091 and P > 0.10, respectively. Further, effects of MOS were examined in 4 in vitro experiments. In Exp. 1 (n = 4 pigs), MOS and mannan-rich fraction (MRF), when added to AM cultures, were able to increase TNF-α production. This direct effect of MOS was not due to endotoxin contamination as verified in Exp. 2 (n = 6 pigs) using polymyxin B, an inhibitor of LPS activation of toll-like receptor 4. Polymyxin B inhibited production of TNF-α by AM after treatment with LPS (P < 0.001), but not after treatment with MOS in the absence of LPS (P > 0.70). In Exp. 3 (n = 6 pigs), when MOS was directly applied in vitro, the pattern of cytokine production by LPS-activated AM was similar to that observed ex vivo, as MOS suppressed LPS-induced TNF-α (P < 0.001) and enhanced LPS-induced IL-10 (P = 0.028). In Exp. 4 (n = 6 pigs), when MRF replaced MOS, AM-produced TNF-α induced by LPS or PLIC was suppressed by MRF (P = 0.015 or P < 0.001, respectively). These data establish that MOS and MRF suppress LPS-induced TNF-α secretions by AM. Generally, the study suggests that MOS may be a potent immunomodulator because it directly activates AM to secrete TNF-α and alters the cytokine responses of bacterial endotoxin-induced AM in both ex vivo and in vitro systems. In particular, feeding MOS to pigs for 2 wk reduces TNF-α and increases IL-10 concentrations after ex vivo treatment of AM with LPS. These immunomodulatory properties of MOS may have important implications for both host defense and avoidance of harmful overstimulation of the immune system.


Subject(s)
Interleukin-10/immunology , Macrophages, Alveolar/drug effects , Mannans/pharmacology , Swine/immunology , Tumor Necrosis Factor-alpha/immunology , Animals , Anti-Inflammatory Agents/pharmacology , Interleukin-10/blood , Least-Squares Analysis , Lipopolysaccharides/immunology , Macrophages, Alveolar/immunology , Male , Poly I-C/immunology , Polymyxin B/pharmacology , Random Allocation , Swine/blood , Tumor Necrosis Factor-alpha/antagonists & inhibitors , Tumor Necrosis Factor-alpha/blood
12.
J Anim Sci ; 90(1): 345-60, 2012 Jan.
Article in English | MEDLINE | ID: mdl-21908641

ABSTRACT

Two experiments were conducted to determine whether 3 different clays in the nursery diet reduce diarrhea of weaned pigs experimentally infected with a pathogenic Escherichia coli. Weaned pigs (21 d old) were housed in individual pens of disease containment chambers for 16 d [4 d before and 12 d after the first challenge (d 0)]. The treatments were in a factorial arrangement: 1) with or without an E. coli challenge (F-18 E. coli strain; heat-labile, heat-stable, and Shiga-like toxins; 10(10) cfu/3 mL oral dose daily for 3 d from d 0) and 2) dietary treatments. The ADG, ADFI, and G:F were measured for each interval (d 0 to 6, 6 to 12, and 0 to 12). Diarrhea score (DS; 1 = normal; 5 = watery diarrhea) was recorded for each pig daily. Feces were collected on d 0, 3, 6, 9, and 12 and plated on blood agar to differentiate ß-hemolytic coliforms (HC) from total coliforms (TC) and on MacConkey agar to verify E. coli. Their populations on blood agar were assessed visually using a score (0 = no growth; 8 = very heavy bacterial growth) and expressed as a ratio of HC to TC scores (RHT). Blood was collected on d 0, 6, and 12 to measure total and differential white blood cell (WBC) counts, packed cell volume (PCV), and total protein (TP). In Exp. 1 (8 treatments; 6 replicates), 48 pigs (6.9 ± 1.0 kg of BW) and 4 diets [a nursery control diet (CON), CON + 0.3% smectite (SM), CON + 0.6% SM, and CON until d 0 and then CON + 0.3% SM] were used. The SM treatments did not affect growth rate of the pigs for the overall period. In the E. coli challenged group, the SM treatments reduced DS for the overall period (1.77 vs. 2.01; P < 0.05) and RHT on d 6 (0.60 vs. 0.87; P < 0.05) and d 9 (0.14 vs. 0.28; P = 0.083), and altered differential WBC on d 6 (neutrophils, 48 vs. 39%, P = 0.092; lymphocytes, 49 vs. 58%, P = 0.082) compared with the CON treatment. In Exp. 2 (16 treatments; 8 replicates), 128 pigs (6.7 ± 0.8 kg of BW) and 8 diets [CON and 7 clay treatments (CON + 0.3% SM, kaolinite, and zeolite individually and all possible combinations to total 0.3% of the diet)] were used. The clay treatments did not affect growth rate of the pigs. In the E. coli challenged group, the clay treatments reduced DS for the overall period (1.63 vs. 3.00; P < 0.05), RHT on d 9 (0.32 vs. 0.76; P < 0.05) and d 12 (0.13 vs. 0.39; P = 0.094), and total WBC on d 6 (15.2 vs. 17.7 × 10(3)/µL; P = 0.069) compared with the control treatment. In conclusion, dietary clays alleviated diarrhea of weaned pigs.


Subject(s)
Aluminum Silicates/therapeutic use , Diarrhea/veterinary , Escherichia coli Infections/veterinary , Escherichia coli/physiology , Swine Diseases/prevention & control , Aluminum Silicates/chemistry , Animal Feed/analysis , Animal Husbandry , Animals , Clay , Diarrhea/microbiology , Diarrhea/prevention & control , Diet/veterinary , Escherichia coli/classification , Escherichia coli Infections/microbiology , Escherichia coli Infections/prevention & control , Feces/microbiology , Female , Male , Swine/growth & development , Swine Diseases/microbiology , Weaning
13.
J Anim Sci ; 89(10): 3016-29, 2011 Oct.
Article in English | MEDLINE | ID: mdl-21622880

ABSTRACT

This study characterized gene expression in peripheral blood mononuclear cells (PBMC) and bronchoalveolar lavage fluid (BALF) cells from control- or mannan oligosaccharide (MOS)-fed pigs with or without porcine reproductive and respiratory syndrome virus (PRRSV) at d 7 postinfection (PI). Weaned pigs (3 wk old) fed 0 or 0.2% MOS (Bio-Mos) diets were intranasally inoculated with PRRSV or a sterile medium at 5 wk of age. Total RNA (3 pigs/treatment) was extracted from cells. Double-stranded cDNA was amplified, labeled, and further hybridized to the Affymetrix GeneChip Porcine Genome Array consisting of 23,937 probe sets representing 20,201 genes. Microarray data were analyzed in R using packages from the Bioconductor project. Differential gene expression was tested by fitting a mixed linear model equivalent to a 2 × 2 factorial ANOVA using the limma package. Dietary MOS and PRRSV changed the expression of thousands of probe sets in PBMC and BALF cells (P < 0.05). The MOS × PRRSV interaction altered the expression of more nonimmune probe sets in PBMC (977 up, 1,128 down) than in BALF cells (117 up, 78 down). The MOS × PRRSV interaction (P < 0.05) for immune probe sets in PBMC affected genes encoding key inflammatory mediators. In uninfected pigs, gene expression of IL-1α, IL-6, myeloid differentiation factor 88, Toll-like receptor (TLR) 4, major histocompatibility complex (MHC) II, and dead box polypeptide 58 increased in PBMC of MOS-fed pigs (P < 0.05). This suggests that MOS enhances disease resistance in pigs and supports the fact that MOS induced a rapid increase in leukocytes at d 3 and 7 PI. Within infected pigs, however, MOS reduced the expression of IL-1ß, IL-6, IL-8, macrophage inflammatory protein (MIP)-1α, MIP-1ß, monocyte chemotactic protein (MCP)-1, and TLR4 genes in PBMC (P < 0.05). This finding may explain why fever was ameliorated in infected pigs fed MOS by d 7 PI. The expression of IL-1ß, IL-6, MIP-1ß, MCP-1, and TLR4 genes was confirmed by quantitative real-time reverse-transcription PCR. In BALF cells of infected pigs, MOS reduced the gene expression of TLR4, MHCII, and molecules associated with the complement system, but increased the gene expression of MHCI. In short, MOS regulated the expression of nonimmune and immune genes in pig leukocytes, perhaps providing benefits by enhancing the immune responses of the pigs to an infection, while preventing overstimulation of the immune system.


Subject(s)
Gene Expression Profiling/veterinary , Mannans/pharmacology , Porcine Reproductive and Respiratory Syndrome/metabolism , Animal Feed/analysis , Animal Nutritional Physiological Phenomena , Animals , Bronchoalveolar Lavage Fluid/cytology , Diet/veterinary , Gene Expression Regulation/drug effects , Leukocytes, Mononuclear/metabolism , Male , Porcine respiratory and reproductive syndrome virus , Protein Array Analysis , Real-Time Polymerase Chain Reaction/veterinary , Reverse Transcriptase Polymerase Chain Reaction/veterinary , Swine
14.
J Anim Sci ; 89(8): 2592-602, 2011 Aug.
Article in English | MEDLINE | ID: mdl-21454863

ABSTRACT

This study was conducted to determine whether the ingestion of mannan oligosaccharide (MOS, Bio-Mos) alters the immune response of nursery pigs challenged with porcine reproductive and respiratory syndrome virus (PRRSV). A total of 64 pigs (3 wk old), free of PRRSV, were used in 2 separate but similar experiments conducted sequentially. Pigs were blocked by initial BW. Sex and ancestry were equalized across treatments. Pigs were randomly assigned from within blocks to 1 of 4 treatments in a 2 × 2 factorial arrangement [2 types of diet: control (0%) and MOS addition (0.2%); 2 levels of PRRSV: with and without]. There were 8 replicate chambers of 2 pigs each. After 2 wk of a 4-wk period of feeding the treatments, pigs were intranasally inoculated with PRRSV or a sterile medium at 5 wk of age. The PRRSV challenge decreased ADG, ADFI, and G:F throughout the experiment (P < 0.001). Feeding MOS improved G:F of the pigs during d 7 to 14 (P=0.041) postinfection (PI). Serum concentrations of tumor necrosis factor (TNF)-α, C-reactive protein, and haptoglobin were increased by PRRSV (P < 0.001). The MOS × PRRSV interaction was significant for TNF-α at d 14 PI (P=0.028), suggesting that infected pigs fed MOS had less TNF-α than those fed the control. Dietary MOS increased serum IL-10 at d 14 PI (P=0.036). Further, MOS-fed pigs had greater numbers of white blood cells (WBC) at d 3 (P=0.048) and 7 PI (P=0.042) and lymphocytes at d 7 PI (P=0.023) than control-fed pigs. In contrast, PRRSV decreased (P < 0.01) WBC numbers until d 14 PI. Dietary MOS appeared (P=0.060) to increase the neutrophils in PRRSV-infected pigs at d 3 PI, but no (P=0.202) MOS × PRRSV interaction was found. Infection with PRRSV increased rectal temperature (RT) of pigs at d 3 PI (P < 0.001) and continued to affect the infected pigs fed the control diet until d 14 PI. The MOS × PRRSV interaction for RT was found at d 7 (P < 0.01) and 10 (P=0.098) PI, indicating that the infected pigs fed MOS had a decreased RT compared with those fed the control. This could explain why feed efficiency was improved by MOS. No effect (P > 0.05) of treatments on viremia or PRRSV-specific antibody was observed. These results suggest that MOS is associated with rapidly increased numbers of WBC at the early stage of infection and alleviates PRRSV-induced effects on G:F and fever. The results also indicate that the reduced intensity of inflammation by MOS may be related to changes in inflammatory mediator levels at the end of the acute phase.


Subject(s)
Mannans/pharmacology , Porcine Reproductive and Respiratory Syndrome/immunology , Porcine respiratory and reproductive syndrome virus , Acute-Phase Proteins/metabolism , Animal Feed/analysis , Animal Nutritional Physiological Phenomena , Animals , Cytokines/blood , Cytokines/metabolism , Diet/veterinary , Female , Leukocyte Count , Male , Mannans/chemistry , Porcine Reproductive and Respiratory Syndrome/blood , Swine , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...