Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Am Chem Soc ; 141(27): 10661-10676, 2019 Jul 10.
Article in English | MEDLINE | ID: mdl-31246449

ABSTRACT

Two-dimensional (2D) hybrid halide perovskites are promising in optoelectronic applications, particularly solar cells and light-emitting devices (LEDs), and for their increased stability as compared to 3D perovskites. Here, we report a new series of structures using propylammonium (PA+), which results in a series of Ruddlesden-Popper (RP) structures with the formula (PA)2(MA)n-1PbnI3n+1 (n = 3, 4) and a new homologous series of "step-like" (SL) structures where the PbI6 octahedra connect in a corner- and face-sharing motif with the general formula (PA)2m+4(MA)m-2Pb2m+1I7m+4 (m = 2, 3, 4). The RP structures show a blue-shift in bandgap for decreasing n (1.90 eV for n = 4 and 2.03 eV for n = 3), while the SL structures have an even greater blue-shift (2.53 eV for m = 4, 2.74 eV for m = 3, and 2.93 eV for m = 2). DFT calculations show that, while the RP structures are electronically 2D quantum wells, the SL structures are electronically 1D quantum wires with chains of corner-sharing octahedra "insulated" by blocks of face-sharing octahedra. Dark measurements for RP crystals show high resistivity perpendicular to the layers (1011 Ω cm) but a lower resistivity parallel to them (107 Ω cm). The SL crystals have varying resistivity in all three directions, confirming both RP and SL crystals' utility as anisotropic electronic materials. The RP structures show strong photoresponse, whereas the SL materials exhibit resistivity trends that are dominated by ionic transport and no photoresponse. Solar cells were made with n = 3 giving an efficiency of 7.04% (average 6.28 ± 0.65%) with negligible hysteresis.

2.
Phys Chem Chem Phys ; 20(14): 9638-9643, 2018 Apr 04.
Article in English | MEDLINE | ID: mdl-29582030

ABSTRACT

As a result of early theoretical predictions, evidence for the Rashba or Dresselhaus effect in hybrid perovskites has recently attracted several experimental investigations, motivated by possible applications in spin-orbitronics. For instance, a large Rashba splitting has recently been reported for the (001) surface of CH3NH3PbBr3. This effect is forbidden in the bulk material since both low-temperature and room-temperature crystal structures present inversion symmetry. Here we investigate the effects of two (001) nanoscale surface reconstructions of CH3NH3PbBr3 using first-principles approaches based on density functional theory (DFT). The two experimental reconstructions are related to different orientations of MA cations at the surface, defining zigzag and dimer phases. The impact of these structural transformations on their electronic structures is thoroughly investigated. Whereas calculations reveal the occurrence of surface-induced Rashba effect, its amplitude is considerably smaller than the experimentally reported value, in agreement with other experimental investigations and leading to the conclusion that mesoscale surface polar domains and/or surface defects may result from sample preparation.

3.
ACS Nano ; 12(4): 3321-3332, 2018 04 24.
Article in English | MEDLINE | ID: mdl-29481060

ABSTRACT

Layered hybrid organic-inorganic perovskites (HOPs) have re-emerged as potential technological solutions for next-generation photovoltaic and optoelectronic applications. Their two-dimensional (2D) nature confers them a significant flexibility and results in the appearance of quantum and dielectric confinements. Such confinements are at the origin of their fascinating properties, and understanding them from a fundamental level is of paramount importance for optimization. Here, we provide an in-depth investigation of band alignments of 2D HOP allowing access to carriers' confinement potentials. 2D HOPs are conceptualized as composite materials in which pseudoinorganic and -organic components are defined. In this way, computational modeling of band alignments becomes affordable using first-principles methods. First, we show that the composite approach is suitable to study the position-dependent dielectric profiles and enables clear differentiation of the respective contributions of inorganic and organic components. Then we apply the composite approach to a variety of 2D HOPs, assessing the impact on the confinement potentials of well and barrier thickness, of the nature of the inorganic well, and of structural transitions. Using the deduced potentials, we further discuss the limitations of the effective mass approximation, scrutinizing the electronic properties of this family of composite materials. Our simulations demonstrate type-I dominant band alignment in 2D HOPs. Finally, we outline design principles on band alignment toward achieving specific optoelectronic properties. Thus, we present alternative theoretical methods to inspect the properties of 2D hybrid perovskites and expect that the composite approach will be applicable to other classes of layered materials.

SELECTION OF CITATIONS
SEARCH DETAIL
...