Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
2.
Molecules ; 25(15)2020 Jul 24.
Article in English | MEDLINE | ID: mdl-32722334

ABSTRACT

Death from tuberculosis has resulted in an increased need for early detection to prevent a tuberculosis (TB) epidemic, especially in closed and crowded populations. Herein, a sensitive electrochemical DNA biosensor based on functionalized iron oxide with mercaptopropionic acid (MPA-Fe3O4) nanoparticle and nanocellulose crystalline functionalized cetyl trimethyl ammonium bromide (NCC/CTAB) has been fabricated for the detection of Mycobacterium tuberculosis (MTB). In this study, a simple drop cast method was applied to deposit solution of MPA-Fe3O4/NCC/CTAB onto the surface of the screen-printed carbon electrode (SPCE). Then, a specific sequence of MTB DNA probe was immobilized onto a modified SPCE surface by using the 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide/N-hydroxysuccinimide (EDC/NHS) coupling mechanism. For better signal amplification and electrochemical response, ruthenium bipyridyl Ru(bpy)32+ was assigned as labels of hybridization followed by the characteristic test using differential pulse voltammetry (DPV). The results of this biosensor enable the detection of target DNA until a concentration as low as 7.96 × 10-13 M with a wide detection range from 1.0 × 10-6 to 1.0 × 10-12 M. In addition, the developed biosensor has shown a differentiation between positive and negative MTB samples in real sampel analysis.


Subject(s)
Carbon/chemistry , DNA, Bacterial/analysis , Ferric Compounds/chemistry , Mycobacterium tuberculosis/isolation & purification , 3-Mercaptopropionic Acid/chemistry , Biosensing Techniques , Cetrimonium/chemistry , Electrochemical Techniques , Electrodes , Mycobacterium tuberculosis/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...