Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Sci Technol ; 58(20): 9000-9012, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38710661

ABSTRACT

Additive manufacturing (AM) offers a variety of material manufacturing techniques for a wide range of applications across many industries. Most efforts at process optimization and exposure assessment for AM are centered around the manufacturing process. However, identifying the material allocation and potentially harmful exposures in end-of-life (EoL) management is equally crucial to mitigating environmental releases and occupational health impacts within the AM supply chain. This research tracks the allocation and potential releases of AM EoL materials within the US through a material flow analysis. Of the generated AM EoL materials, 58% are incinerated, 33% are landfilled, and 9% are recycled by weight. The generated data set was then used to examine the theoretical occupational hazards during AM EoL material management practices through generic exposure scenario assessment, highlighting the importance of ventilation and personal protective equipment at all stages of AM material management. This research identifies pollution sources, offering policymakers and stakeholders insights to shape pollution prevention and worker safety strategies within the US AM EoL management pathways.


Subject(s)
Occupational Exposure , Humans , Recycling
2.
J Hazard Mater ; 4412023 Jan 05.
Article in English | MEDLINE | ID: mdl-37155557

ABSTRACT

Plastic growing demand and the increment in global plastics production have raised the number of spent plastics, out of which over 90% are either landfilled or incinerated. Both methods for handling spent plastics are susceptible to releasing toxic substances, damaging air, water, soil, organisms, and public health. Improvements to the existing infrastructure for plastics management are needed to limit chemical additive release and exposure resulting from the end-of-life (EoL) stage. This article analyzes the current plastic waste management infrastructure and identifies chemical additive releases through a material flow analysis. Additionally, we performed a facility-level generic scenario analysis of the current U.S. EoL stage of plastic additives to track and estimate their potential migration, releases, and occupational exposure. Potential scenarios were analyzed through sensitivity analysis to examine the merit of increasing recycling rates, using chemical recycling, and implementing additive extraction post-recycling. Our analyses identified that the current state of plastic EoL management possesses high mass flow intensity toward incineration and landfilling. Although maximizing the plastic recycling rate is a reasonably straightforward goal for enhancing material circularity, the conventional mechanical recycling method requires improvement because major chemical additive release and contamination routes act as obstacles to achieving high-quality plastics for future reuse and should be mitigated through chemical recycling and additive extraction. The potential hazards and risks identified in this research create an opportunity to design a safer closed-loop plastic recycling infrastructure to handle additives strategically and support sustainable materials management efforts to transform the US plastic economy from linear to circular.

3.
Ind Eng Chem Res ; 62(5): 2090-2103, 2023 Feb 08.
Article in English | MEDLINE | ID: mdl-36972192

ABSTRACT

Solvents are used in chemical and pharmaceutical industries as a reaction medium, selective dissolution and extraction media, and dilution agents. Thus, a sizable amount of solvent waste is generated due to process inefficiencies. Most common ways of handling solvent waste are on-site, off-site disposal, and incineration, which have a considerable negative environmental impact. Solvent recovery is typically not used because of potential difficulties in achieving required purity guidelines, as well as additional infrastructure and investments that are needed. To this end, this problem must be studied carefully by involving aspects from capital needs, environmental benefits, and comparison with traditional disposal methods, while achieving the required purity. Thus, we have developed a user-friendly software tool that allows engineers to easily access solvent recovery options and predict an economical and environmentally favorable strategy, given a solvent-containing waste stream. This consists of a maximal process flow diagram that encompasses multiple stages of separations and technologies within those stages. This process flow diagram develops the superstructure that provides multiple technology pathway options for any solvent waste stream. Separation technologies are placed in different stages; depending on the component, they can separate in terms of their physical and chemical properties. A comprehensive chemical database is created to store all relevant chemical and physical properties. The pathway prediction is modeled as an economic optimization problem in General Algebraic Modeling Systems (GAMS). With GAMS code as the backend, a Graphical User Interface (GUI) is created in Matlab App Designer to provide a user-friendly tool to the chemical industry. This tool can act as a guidance system to assist professional engineers and provide an easy comparative estimate in the early stages of process design.

4.
Life Sci ; 309: 121014, 2022 Nov 15.
Article in English | MEDLINE | ID: mdl-36179814

ABSTRACT

Positive allosteric modulators (PAMs) of metabotropic glutamate receptor type 5 (mGluR5) potentiate positive receptor response and may be effective for the treatment of schizophrenia and cognitive disorders. Although crystal structures of mGluR5 complexed with the negative allosteric modulators (NAMs) are available, no crystal structure of mGluR5 complexed with PAM has been reported to date. Thus, conformational changes associated with the binding of PAMs to mGluR5 remain elusive. Here, a PAM CDPPB, and two NAMs MTEP and MFZ10-7 used as a negative control, were docked to the crystal structure. The docked complexes were submitted to molecular dynamics simulations to examine the activation of the PAM system. An MM/GBSA binding energy calculation was performed to estimate binding strength. Furthermore, molecular switch analysis was done to get insights into conformational changes of the receptor. The PAM CDPPB displays a stronger binding affinity for mGluR5 and induces conformational changes. Also, a salt bridge between TM3 and TM7, corresponding to the ionic lock switch in class A GPCRs is found to be broken. The PAM-induced receptor conformation is more like the agonist-induced conformation than the antagonist-induced conformation, suggesting that PAM works by inducing conformation change and stabilizing the active receptor conformation.


Subject(s)
Benzamides , Molecular Dynamics Simulation , Allosteric Regulation , Benzamides/pharmacology , Pyrazoles/pharmacology
5.
iScience ; 24(10): 103114, 2021 Oct 22.
Article in English | MEDLINE | ID: mdl-34622166

ABSTRACT

Recovering waste solvent for reuse presents an excellent alternative to improving the greenness of industrial processes. Implementing solvent recovery practices in the chemical industry is necessary, given the increasing focus on sustainability to promote a circular economy. However, the systematic design of recovery processes is a daunting task due to the complexities associated with waste stream composition, techno-economic analysis, and environmental assessment. Furthermore, the challenges to satisfy the desired product specifications, particularly in pharmaceuticals and specialty chemical industries, may also deter solvent recovery and reuse practices. To this end, this review presents a systems-level approach including various methodologies that can be implemented to design and evaluate efficient solvent recovery pathways.

6.
ACS Appl Mater Interfaces ; 10(47): 40411-40423, 2018 Nov 28.
Article in English | MEDLINE | ID: mdl-30395433

ABSTRACT

Sun protection is a global concern, and maximizing sunscreen stability and efficacy depends partially on the prevention of UV filters recrystallization. We aimed to study the efficacy of hydrophobic solubilizers in preventing the recrystallization of solid hydrophobic UV filters in predissolutions, sunscreen formulations, and during simulated human use. Recrystallization of UV filters induced by ultrasonication, temperature variation, or simulated human application was analyzed by different methods. Maximum solubility of UV filters in solubilizers was determined. Surprisingly, the best solubilizer was not necessarily the best solvent to prevent recrystallization, suggesting there are different forces controlling these phenomena. Hydrophobic solubilizers tend to perform better than ethanol in predissolutions, but the presence of other components in final products may change their performance. Results suggest that some UV filters tend to form liquid clusters, which may behave as crystals and affect the desired even distribution of UV filters on the skin. UV filters were also found to respond differently to Hansen Solubility Parameters. Scanning electron microscopy supports the fact that recrystallization upon sunscreen application is an issue to be tested during development. A timesaving method to predict recrystallization of UV filters in clear systems was developed and is presented as a tool to enhance the efficacy of sunscreens.


Subject(s)
Sunscreening Agents/pharmacology , Ultraviolet Rays , Calorimetry , Crystallization , Humans , Microscopy, Electron, Scanning , Skin, Artificial , Solubility , Sunscreening Agents/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...