Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Dalton Trans ; 46(39): 13562-13581, 2017 Oct 10.
Article in English | MEDLINE | ID: mdl-28952624

ABSTRACT

Several complexes of "PtL2" composition containing two cyanoxime anions - 2-oximino-2-cyano-N-piperidineacetamide (PiPCO-) and 2-oximino-2-cyano-N-morpholylacetamide (MCO-) - have been obtained and characterized both in solution and in the solid state. Complexes exist as two distinct polymorphs: monomeric yellow complexes and dark-green [PtL2]n 1D polymers, while for the MCO- anion a red, solvent containing dimeric [Pt(MCO)2·DMSO]2 complex has also been isolated. The interconversion of polymorphs was investigated. The monomeric PtL2 units are arranged into anisotropic extended solid [PtL2]n polymers with the help of PtPt metallophilic interactions. Crystal structures of monomeric PtL2 (L = PiPCO-, MCO-) and red dimeric [Pt(MCO)2·DMSO]2 complexes were determined and revealed the cis-arrangement of cyanoxime anions. The Pt-Pt distance in the "head-to-tail" red dimer was found to be 3.133 Å. The structure of the polymeric [Pt(PiPCO)2]n compound was elucidated using the EXAFS method and evidenced the formation of Pt-wires with ∼3.15 Å intermetallic separation. The EPR spectra of both 1D polymers at variable temperatures indicate the absence of Pt(iii) species. Both pure dark-green [PtL2]n polymers showed a considerable room temperature electrical conductivity of 20-30 S cm-1, which evidences the formation of a mixed valence Pt(ii)/Pt(iv) system. We discovered that these 1D polymeric [PtL2]n complexes show an intense NIR fluorescence beyond 1000 nm, while yellow monomeric PtL2 complexes are not emissive at all. The room temperature excitation spectra of 1D polymeric [PtL2]n complexes demonstrated their strong emission beyond 1000 nm regardless of the used excitation wavelength between 350 and 800 nm, which is typical of systems with delocalized charge carriers. For the first time the formation of mixed valence "metal wires" held together by metallophilic interactions is directly linked both with an intense fluorescence in the NIR region of the spectrum and with the electrical conductivity. The effect of the concentration of [PtL2]n complexes dispersed in the dielectric salt matrix on the photoluminescence wavelength and intensity was investigated. Both polymers show a quantum yield that is remarkably high for this region of the spectrum, reaching ∼2%. Variable temperature emission of polymeric [PtL2]n in the -190-+60 °C range was studied as well.

2.
Proc Natl Acad Sci U S A ; 110(29): 11815-20, 2013 Jul 16.
Article in English | MEDLINE | ID: mdl-23818593

ABSTRACT

We have established a reconstitution system for the translocon SecYEG in proteoliposomes in which 55% of the accessible translocons are active. This level corresponds to the fraction of translocons that are active in vitro when assessed in their native environment of cytoplasmic membrane vesicles. Assays using these robust reconstituted proteoliposomes and cytoplasmic membrane vesicles have revealed that the number of SecYEG units involved in an active translocase depends on the precursor undergoing transfer. The active translocase for the precursor of periplasmic galactose-binding protein contains twice the number of heterotrimeric units of SecYEG as does that for the precursor of outer membrane protein A.


Subject(s)
Calcium-Binding Proteins/metabolism , Escherichia coli Proteins/genetics , Escherichia coli/enzymology , Membrane Proteins/genetics , Monosaccharide Transport Proteins/metabolism , Periplasmic Binding Proteins/metabolism , Carbon Radioisotopes/metabolism , Escherichia coli Proteins/metabolism , Membrane Proteins/metabolism , Microscopy, Atomic Force , Proteolipids/metabolism , SEC Translocation Channels , Sulfur Radioisotopes/metabolism , Transport Vesicles/metabolism
3.
Dalton Trans ; 42(14): 4931-46, 2013 Apr 14.
Article in English | MEDLINE | ID: mdl-23385567

ABSTRACT

A new multidentate bifunctional organic ligand ­ di-N,N'-(2-cyano-2-oximinoacetyl)piperazine ­ was synthesized in high yield using a two-step procedure carried out under ambient conditions. At first, the reaction of piperazine and neat methylcyanoacetate led to the di-N,N'-(cyanoacetyl)piperazine (1), which then was converted into bis-cyanoxime, di-N,N'-(2-cyano-2-oximinoacetyl)piperazine (HL, 2) using a room temperature nitrosation reaction with gaseous methylnitrite. Synthesized bis-cyanoxime was characterized by 1H, 13C NMR, UV-visible, IR spectroscopy and the X-ray analysis. The ligand 2 exists as a mixture of three diastereomers arising from the syn- and anti-geometry of the cyanoxime group. The prolonged crystallization of 2 from an ethanol­water mixture leads to the formation of: (a) colorless crystals that according to the X-ray analysis contain a 51.2:48.8% co-crystallized mixture of both isomers that have the same H-bonding motif (minority), and (b) a white amorphous material that represents an almost pure anti-isomer (majority). The deprotonation of 2 leads to the formation of a yellow dianion that demonstrated pronounced solvatochromism of its n → π* transition in the nitroso-chromophore. The disodium salt Na2L·4H2O (3) was obtained from 2 using NaOC2H5 in ethanol. The new bis-cyanoxime 2 reacts with Tl2CO3 and AgNO3 in aqueous solutions with the formation of light-stable, sparingly soluble yellow precipitates of M'2L·xH2O composition (M' = Tl, Ag; Tl = 4, x = 0; Ag = 5, x = 2). The reaction of 3 with Ni2+ or K2M''Cl4 (M'' = Pd, Pt) in aqueous solutions leads to NiL·4H2O (6), PdL·4H2O (7) and PtL·5H2O (8). The crystal structure of 4 was determined and revealed the formation of a 3D-coordination polymeric complex in which the bis-cyanoxime acts as a dianionic, bridging, formally decadentate ligand. Each Tl(I) center has two bonds (2.655, 2.769 Å), shorter than the sum of ionic radii Tl­O (oxime group), and three longer, >2.89 Å, mostly electrostatic Tl···O contacts, involving oxygen atoms of the amide-group and the oxime-group of neighboring units. Among several possible binding modes, the coordination of the bis-cyanoxime dianion of 2 adopted in complex 4 is unusual, and evidenced its great potential as a versatile building block for coordination and supramolecular chemistry.


Subject(s)
Oximes/chemistry , Piperazines/chemistry , Coordination Complexes/chemical synthesis , Coordination Complexes/chemistry , Crystallography, X-Ray , Ligands , Molecular Conformation , Piperazine , Piperazines/chemical synthesis , Thermodynamics
SELECTION OF CITATIONS
SEARCH DETAIL
...