Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Anal Chim Acta ; 649(2): 236-45, 2009 Sep 07.
Article in English | MEDLINE | ID: mdl-19699400

ABSTRACT

An original electrochemical sensor based on molecularly imprinted conducting polymer (MICP) is developed, which enables the recognition of a small pesticide target molecule, atrazine. The conjugated MICP, poly(3,4-ethylenedioxythiophene-co-thiophene-acetic acid), has been electrochemically synthesized onto a platinum electrode following two steps: (i) polymerization of comonomers in the presence of atrazine, already associated to the acetic acid substituent through hydrogen bonding, and (ii) removal of atrazine from the resulting polymer, which leaves the acetic acid substituents open for association with atrazine. The obtained sensing MICP is highly specific towards newly added atrazine and the recognition can be quantitatively analyzed by the variation of the cyclic voltammogram of MICP. The developed sensor shows remarkable properties: selectivity towards triazinic family, large range of detection (10(-9) mol L(-1) to 1.5 x 10(-2) mol L(-1) in atrazine) and low detection threshold (10(-7) mol L(-1)).


Subject(s)
Atrazine/analysis , Electrochemical Techniques/methods , Molecular Imprinting/methods , Pesticides/analysis , Polymers/chemistry , Electrodes , Platinum/chemistry
2.
Biochim Biophys Acta ; 1787(12): 1505-15, 2009 Dec.
Article in English | MEDLINE | ID: mdl-19632193

ABSTRACT

Bacterial reaction centers use light energy to couple the uptake of protons to the successive semi-reduction of two quinones, namely Q(A) and Q(B). These molecules are situated symmetrically in regard to a non-heme iron atom. Four histidines and one glutamic acid, M234Glu, constitute the five ligands of this atom. By flash-induced absorption spectroscopy and delayed fluorescence we have studied in the M234EH and M234EL variants the role played by this acidic residue on the energetic balance between the two quinones as well as in proton uptake. Delayed fluorescence from the P(+)Q(A)(-) state (P is the primary electron donor) and temperature dependence of the rate of P(+)Q(A)(-) charge recombination that are in good agreement show that in the two RC variants, both Q(A)(-) and Q(B)(-) are destabilized by about the same free energy amount: respectively approximately 100 +/- 5 meV and 90 +/- 5 meV for the M234EH and M234EL variants, as compared to the WT. Importantly, in the M234EH and M234EL variants we observe a collapse of the high pH band (present in the wild-type reaction center) of the proton uptake amplitudes associated with formation of Q(A)(-) and Q(B)(-). This band has recently been shown to be a signature of a collective behaviour of an extended, multi-entry, proton uptake network. M234Glu seems to play a central role in the proton sponge-like system formed by the RC protein.


Subject(s)
Glutamic Acid/physiology , Photosynthesis , Rhodobacter sphaeroides/metabolism , Electron Transport , Energy Metabolism , Fluorescence , Hydrogen-Ion Concentration , Protons , Temperature , Thermodynamics
3.
Biochemistry ; 46(15): 4510-21, 2007 Apr 17.
Article in English | MEDLINE | ID: mdl-17378585

ABSTRACT

Bacterial reaction centers (RCs) convert light energy into chemical free energy via the double reduction and protonation of the secondary quinone electron acceptor, QB, to the dihydroquinone QBH2. Two RC mutants (M266His --> Leu and M266His --> Ala) with a modified ligand of the non-heme iron have been studied by flash-induced absorbance change spectroscopy. No important changes were observed for the rate constants of the first and second electron transfers between the first quinone electron acceptor, QA, and QB. However, in the M266HL mutant a destabilization of approximately 40 meV of the free energy level of QA- was observed, at variance with the M266HA mutant. The superposition of the three-dimensional X-ray structures of the three proteins in the QA region provides no obvious explanation for the energy modification in the M266HL mutant. The shift of the midpoint redox potential of QA/QA- in M266HL caused accelerated recombination of the charges in the P+ QA- state of the RCs where the native QA was replaced by a low potential anthraquinone (AQA). As previously reported for the native RCs, in the M266HL we observed a biphasicity of the P+ AQA- --> P AQA charge recombination. Interestingly, both phases present a similar acceleration in the M266HL mutant with respect to the wild type. The pH dependencies of the proton uptake upon QA- and QB- formations are superimposable in both mutants but very different from those of native RCs. The data measured in mutants are similar to those that we previously obtained on strains modified at various sites of the cytoplasmic region. The similarity of the response to these different mutations is puzzling, and we propose that it arises from a collective behavior of multiple acidic residues resulting in strongly anticooperative proton binding. The unspecific disappearance of the high pH band of proton uptake observed in all these mutants appears as the natural consequence of removing any member of an interactive proton cluster. This long range interaction also accounts for the similar responses to mutations of the proton uptake pattern induced by either QA- or QB-. We surmise that the presence of an extended protonated water H-bond network providing protons to QB is responsible for these effects.


Subject(s)
Iron/metabolism , Mutation , Photosynthetic Reaction Center Complex Proteins/metabolism , Protons , Algorithms , Binding Sites/genetics , Electron Transport/radiation effects , Hydrogen-Ion Concentration , Kinetics , Light , Models, Molecular , Mutagenesis, Site-Directed , Oxidation-Reduction/radiation effects , Photosynthetic Reaction Center Complex Proteins/chemistry , Photosynthetic Reaction Center Complex Proteins/genetics , Protein Binding/radiation effects , Protein Structure, Secondary , Quinones/chemistry , Rhodobacter sphaeroides/genetics , Rhodobacter sphaeroides/metabolism , Rhodobacter sphaeroides/radiation effects
SELECTION OF CITATIONS
SEARCH DETAIL
...