Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 25
Filter
Add more filters










Publication year range
1.
Int J Mol Sci ; 23(15)2022 Jul 30.
Article in English | MEDLINE | ID: mdl-35955580

ABSTRACT

The Vitamin D receptor (VDR) plays a key role in calcium homeostasis, as well as in cell proliferation and differentiation. Among the large number of VDR ligands that have been developed, we have previously shown that BXL-62 and Gemini-72, two C-20-modified vitamin D analogs are highly potent VDR agonists. In this study, we show that both VDR ligands restore the transcriptional activities of VDR variants unresponsive to the natural ligand and identified in patients with rickets. The elucidated mechanisms of action underlying the activities of these C-20-modified analogs emphasize the mutual adaptation of the ligand and the VDR ligand-binding pocket.


Subject(s)
Receptors, Calcitriol , Rickets , Humans , Ligands , Protein Binding , Receptors, Calcitriol/agonists , Vitamin D
2.
J Virol ; 96(10): e0187521, 2022 05 25.
Article in English | MEDLINE | ID: mdl-35475668

ABSTRACT

Persistent infection with some mucosal α-genus human papillomaviruses (HPVs; the most prevalent one being HPV16) can induce cervical carcinoma, anogenital cancers, and a subset of head and neck squamous cell carcinoma (HNSCC). Cutaneous ß-genus HPVs (such as HPV5 and HPV8) associate with skin lesions that can progress into squamous cell carcinoma with sun exposure in Epidermodysplasia verruciformis patients and immunosuppressed patients. Here, we analyzed mechanisms used by E6 proteins from the α- and ß-genus to inhibit the interferon-ß (IFNB1) response. HPV16 E6 mediates this effect by a strong direct interaction with interferon regulatory factor 3 (IRF3). The binding site of E6 was localized within a flexible linker between the DNA-binding domain and the IRF-activation domain of IRF3 containing an LxxLL motif. The crystallographic structure of the complex between HPV16 E6 and the LxxLL motif of IRF3 was solved and compared with the structure of HPV16 E6 interacting with the LxxLL motif of the ubiquitin ligase E6AP. In contrast, cutaneous HPV5 and HPV8 E6 proteins bind to the IRF3-binding domain (IBiD) of the CREB-binding protein (CBP), a key transcriptional coactivator in IRF3-mediated IFN-ß expression. IMPORTANCE Persistent HPV infections can be associated with the development of several cancers. The ability to persist depends on the ability of the virus to escape the host immune system. The type I interferon (IFN) system is the first-line antiviral defense strategy. HPVs carry early proteins that can block the activation of IFN-I. Among mucosal α-genus HPV types, the HPV16 E6 protein has a remarkable property to strongly interact with the transcription factor IRF3. Instead, cutaneous HPV5 and HPV8 E6 proteins bind to the IRF3 cofactor CBP. These results highlight the versatility of E6 proteins to interact with different cellular targets. The interaction between the HPV16 E6 protein and IRF3 might contribute to the higher prevalence of HPV16 than that of other high-risk mucosal HPV types in HPV-associated cancers.


Subject(s)
Interferon Regulatory Factor-3 , Interferon-beta , Oncogene Proteins, Viral , Papillomavirus Infections , Repressor Proteins , Human papillomavirus 16/metabolism , Humans , Interferon Regulatory Factor-3/genetics , Interferon Regulatory Factor-3/metabolism , Interferon-beta/metabolism , Mucous Membrane/virology , Oncogene Proteins, Viral/genetics , Oncogene Proteins, Viral/metabolism , Papillomaviridae/metabolism , Repressor Proteins/genetics , Repressor Proteins/metabolism , Skin/virology
3.
PLoS Genet ; 17(4): e1009492, 2021 04.
Article in English | MEDLINE | ID: mdl-33882063

ABSTRACT

Nuclear receptors are ligand-activated transcription factors that modulate gene regulatory networks from embryonic development to adult physiology and thus represent major targets for clinical interventions in many diseases. Most nuclear receptors function either as homodimers or as heterodimers. The dimerization is crucial for gene regulation by nuclear receptors, by extending the repertoire of binding sites in the promoters or the enhancers of target genes via combinatorial interactions. Here, we focused our attention on an unusual structural variation of the α-helix, called π-turn that is present in helix H7 of the ligand-binding domain of RXR and HNF4. By tracing back the complex evolutionary history of the π-turn, we demonstrate that it was present ancestrally and then independently lost in several nuclear receptor lineages. Importantly, the evolutionary history of the π-turn motif is parallel to the evolutionary diversification of the nuclear receptor dimerization ability from ancestral homodimers to derived heterodimers. We then carried out structural and biophysical analyses, in particular through point mutation studies of key RXR signature residues and showed that this motif plays a critical role in the network of interactions stabilizing homodimers. We further showed that the π-turn was instrumental in allowing a flexible heterodimeric interface of RXR in order to accommodate multiple interfaces with numerous partners and critical for the emergence of high affinity receptors. Altogether, our work allows to identify a functional role for the π-turn in oligomerization of nuclear receptors and reveals how this motif is linked to the emergence of a critical biological function. We conclude that the π-turn can be viewed as a structural exaptation that has contributed to enlarging the functional repertoire of nuclear receptors.


Subject(s)
Embryonic Development/genetics , Receptors, Cytoplasmic and Nuclear/ultrastructure , Retinoid X Receptors/genetics , Transcription Factors/ultrastructure , Amino Acid Sequence/genetics , Binding Sites/genetics , Dimerization , Gene Expression Regulation, Developmental/genetics , Gene Regulatory Networks/genetics , Humans , Ligands , Promoter Regions, Genetic/genetics , Receptors, Cytoplasmic and Nuclear/chemistry , Receptors, Cytoplasmic and Nuclear/genetics , Retinoid X Receptors/ultrastructure , Transcription Factors/chemistry , Transcription Factors/genetics
4.
Genome Biol ; 21(1): 117, 2020 05 18.
Article in English | MEDLINE | ID: mdl-32423472

ABSTRACT

Non-canonical residues, caps, crosslinks, and nicks are important to many functions of DNAs, RNAs, proteins, and complexes. However, we do not fully understand how networks of such non-canonical macromolecules generate behavior. One barrier is our limited formats for describing macromolecules. To overcome this barrier, we develop BpForms and BcForms, a toolkit for representing the primary structure of macromolecules as combinations of residues, caps, crosslinks, and nicks. The toolkit can help omics researchers perform quality control and exchange information about macromolecules, help systems biologists assemble global models of cells that encompass processes such as post-translational modification, and help bioengineers design cells.


Subject(s)
Macromolecular Substances/standards , Molecular Structure , Software , Macromolecular Substances/chemistry , Proteomics , Synthetic Biology , Systems Biology
5.
Phys Chem Chem Phys ; 22(3): 1359-1370, 2020 Jan 22.
Article in English | MEDLINE | ID: mdl-31854397

ABSTRACT

Depending on the amino acid sequence, as well as the local environment, some peptides have the capability to fold into multiple secondary structures. Conformational switching between such structures is a key element of protein folding and aggregation. Specifically, understanding the molecular mechanism underlying the transition from an α-helix to a ß-hairpin is critical because it is thought to be a harbinger of amyloid assembly. In this study, we explore the energy landscape for an 18-residue peptide (DP5), designed by Araki and Tamura to exhibit equal propensities for the α-helical and ß-hairpin forms. We find that the degeneracy is encoded in the multifunnel nature of the underlying free energy landscape. In agreement with experiment, we also observe that mutation of tyrosine at position 12 to serine shifts the equilibrium in favor of the α-helix conformation, by altering the landscape topography. The transition from the α-helix to the ß-hairpin is a complex stepwise process, and occurs via collapsed coil-like intermediates. Our findings suggest that even a single mutation can tune the emergent features of the landscape, providing an efficient route to protein design. Interestingly, the transition pathways for the conformational switch seem to be minimally perturbed upon mutation, suggesting that there could be universal microscopic features that are conserved among different switch-competent protein sequences.


Subject(s)
Peptides/chemistry , Mutation , Peptides/genetics , Protein Conformation, alpha-Helical/genetics , Protein Conformation, beta-Strand/genetics
6.
J Med Chem ; 62(8): 4225-4231, 2019 04 25.
Article in English | MEDLINE | ID: mdl-30920824

ABSTRACT

Coumermycin A1 is a natural aminocoumarin that inhibits bacterial DNA gyrase, a member of the GHKL proteins superfamily. We report here the first cocrystal structures of gyrase B bound to coumermycin A1, revealing that one coumermycin A1 molecule traps simultaneously two ATP-binding sites. The inhibited dimers from different species adopt distinct sequence-dependent conformations, alternative to the ATP-bound form. These structures provide a basis for the rational development of coumermycin A1 derivatives for antibiotherapy and biotechnology applications.


Subject(s)
Aminocoumarins/chemistry , DNA Gyrase/chemistry , Adenosine Triphosphate/chemistry , Adenosine Triphosphate/metabolism , Aminocoumarins/metabolism , Binding Sites , DNA Gyrase/metabolism , Dimerization , Escherichia coli/enzymology , Hydrogen Bonding , Molecular Dynamics Simulation , Protein Structure, Quaternary , Protein Subunits/chemistry , Protein Subunits/metabolism , Thermus thermophilus/enzymology
7.
Structure ; 27(4): 566-578, 2019 04 02.
Article in English | MEDLINE | ID: mdl-30744993

ABSTRACT

Allosteric regulation plays an important role in many biological processes, such as signal transduction, transcriptional regulation, and metabolism. Allostery is rooted in the fundamental physical properties of macromolecular systems, but its underlying mechanisms are still poorly understood. A collection of contributions to a recent interdisciplinary CECAM (Center Européen de Calcul Atomique et Moléculaire) workshop is used here to provide an overview of the progress and remaining limitations in the understanding of the mechanistic foundations of allostery gained from computational and experimental analyses of real protein systems and model systems. The main conceptual frameworks instrumental in driving the field are discussed. We illustrate the role of these frameworks in illuminating molecular mechanisms and explaining cellular processes, and describe some of their promising practical applications in engineering molecular sensors and informing drug design efforts.


Subject(s)
Allosteric Site , Biosensing Techniques , Drug Design , Proteins/chemistry , Allosteric Regulation , Animals , Gene Expression Regulation , Humans , Metabolic Networks and Pathways , Molecular Dynamics Simulation , Proteins/genetics , Proteins/metabolism , Signal Transduction , Thermodynamics , Transcription, Genetic
8.
Mol Cell Endocrinol ; 481: 44-52, 2019 02 05.
Article in English | MEDLINE | ID: mdl-30476562

ABSTRACT

Retinoid X Receptors (RXRs) act as dimer partners for several nuclear receptors including itself, binding to genomic DNA response elements and regulating gene transcription with cell and gene specificity. As homodimers, RXRs bind direct repeats of the half-site (A/G)G(G/T)TCA separated by 1 nucleotide (DR1) and little variability of this consensus site is observed for natural DR1s. However, these variations are responsible of the modulation of RXR receptors function through differential binding affinity and conformational changes. To further our understanding of the molecular mechanisms underlying RXR-DNA interactions, we examined how RXR DBDs bind to different DR1s using thermodynamics, X-ray crystallography and nuclear magnetic resonance (NMR) spectroscopy. We show that the half-site sequences modulate the binding cooperativity that results from the protein-protein contacts between the two DBDs. Chemical shifts perturbation NMR experiments revealed that sequence variations in half-sites induce changes that propagate from the protein-DNA interface to the dimerization interface throughout the DBD fold.


Subject(s)
DNA/metabolism , Retinoid X Receptors/chemistry , Retinoid X Receptors/metabolism , Animals , Binding Sites , Calorimetry , Crystallography, X-Ray , Humans , Magnetic Resonance Spectroscopy , Models, Molecular , Protein Binding , Protein Conformation , Protein Domains
9.
J Steroid Biochem Mol Biol ; 184: 11-19, 2018 11.
Article in English | MEDLINE | ID: mdl-29940311

ABSTRACT

Steroid hormone receptors are important regulators of development and physiology in bilaterian animals, but the role of steroid signaling in cnidarians has been contentious. Cnidarians produce steroids, including A-ring aromatic steroids with a side-chain, but these are probably made through pathways different than the one used by vertebrates to make their A-ring aromatic steroids. Here we present comparative genomic analyses indicating the presence of a previously undescribed nuclear receptor family within medusozoan cnidarians, that we propose to call NR3E. This family predates the diversification of ERR/ER/SR in bilaterians, indicating that the first NR3 evolved in the common ancestor of the placozoan and cnidarian-bilaterian with lineage-specific loss in the anthozoans, even though multiple species in this lineage have been shown to produce aromatic steroids, whose function remain unclear. We discovered serendipitously that a cytoplasmic factor within epidermal cells of transgenic Hydra vulgaris can trigger the nuclear translocation of heterologously expressed human ERα. This led us to hypothesize that aromatic steroids may also be present in the medusozoan cnidarian lineage, which includes Hydra, and may explain the translocation of human ERα. Docking experiments with paraestrol A, a cnidarian A-ring aromatic steroid, into the ligand-binding pocket of Hydra NR3E indicates that, if an aromatic steroid is indeed the true ligand, which remains to be demonstrated, it would bind to the pocket through a partially distinct mechanism from the manner in which estradiol binds to vertebrate ER.


Subject(s)
Hydra/metabolism , Receptors, Steroid/metabolism , Signal Transduction/physiology , Animals , Binding Sites/genetics , Binding Sites/physiology , Estrogen Receptor alpha/genetics , Evolution, Molecular , Humans , Ligands , Molecular Docking Simulation
10.
PLoS One ; 12(1): e0171043, 2017.
Article in English | MEDLINE | ID: mdl-28125680

ABSTRACT

Retinoic acid (RA) plays key roles in cell differentiation and growth arrest through nuclear retinoic acid receptors (RARs), which are ligand-dependent transcription factors. While the main trigger of RAR activation is the binding of RA, phosphorylation of the receptors has also emerged as an important regulatory signal. Phosphorylation of the RARγ N-terminal domain (NTD) is known to play a functional role in neuronal differentiation. In this work, we investigated the phosphorylation of RARγ ligand binding domain (LBD), and present evidence that the phosphorylation status of the LBD affects the phosphorylation of the NTD region. We solved the X-ray structure of a phospho-mimetic mutant of the LBD (RARγ S371E), which we used in molecular dynamics simulations to characterize the consequences of the S371E mutation on the RARγ structural dynamics. Combined with simulations of the wild-type LBD, we show that the conformational equilibria of LBD salt bridges (notably R387-D340) are affected by the S371E mutation, which likely affects the recruitment of the kinase complex that phosphorylates the NTD. The molecular dynamics simulations also showed that a conservative mutation in this salt bridge (R387K) affects the dynamics of the LBD without inducing large conformational changes. Finally, cellular assays showed that the phosphorylation of the NTD of RARγ is differentially regulated by retinoic acid in RARγWT and in the S371N, S371E and R387K mutants. This multidisciplinary work highlights an allosteric coupling between phosphorylations of the LBD and the NTD of RARγ and supports the importance of structural dynamics involving electrostatic interactions in the regulation of RARs activity.


Subject(s)
Allosteric Regulation/physiology , Receptors, Retinoic Acid/metabolism , Tretinoin/metabolism , Humans , Ligands , Molecular Dynamics Simulation , Phosphorylation , Protein Binding , Retinoic Acid Receptor gamma
11.
Sci Rep ; 5: 10386, 2015 May 22.
Article in English | MEDLINE | ID: mdl-25999294

ABSTRACT

Analysis of an intrinsically disordered protein (IDP) reveals an underlying multifunnel structure for the energy landscape. We suggest that such 'intrinsically disordered' landscapes, with a number of very different competing low-energy structures, are likely to characterise IDPs, and provide a useful way to address their properties. In particular, IDPs are present in many cellular protein interaction networks, and several questions arise regarding how they bind to partners. Are conformations resembling the bound structure selected for binding, or does further folding occur on binding the partner in a induced-fit fashion? We focus on the p53 upregulated modulator of apoptosis (PUMA) protein, which adopts an α-helical conformation when bound to its partner, and is involved in the activation of apoptosis. Recent experimental evidence shows that folding is not necessary for binding, and supports an induced-fit mechanism. Using a variety of computational approaches we deduce the molecular mechanism behind the instability of the PUMA peptide as a helix in isolation. We find significant barriers between partially folded states and the helix. Our results show that the favoured conformations are molten-globule like, stabilised by charged and hydrophobic contacts, with structures resembling the bound state relatively unpopulated in equilibrium.


Subject(s)
Apoptosis Regulatory Proteins/chemistry , Tumor Suppressor Proteins/chemistry , Animals , Apoptosis Regulatory Proteins/metabolism , Hydrogen Bonding , Mice , Molecular Dynamics Simulation , Protein Folding , Protein Structure, Secondary , Protein Structure, Tertiary , Solvents/chemistry , Thermodynamics , Tumor Suppressor Proteins/metabolism
12.
Angew Chem Int Ed Engl ; 54(27): 7958-62, 2015 Jun 26.
Article in English | MEDLINE | ID: mdl-26014966

ABSTRACT

The E6 oncoproteins of high-risk mucosal (hrm) human papillomaviruses (HPVs) contain a pocket that captures LxxLL motifs and a C-terminal motif that recruits PDZ domains, with both functions being crucial for HPV-induced oncogenesis. A chimeric protein was built by fusing a PDZ domain and an LxxLL motif, both known to bind E6. NMR spectroscopy, calorimetry and a mammalian protein complementation assay converged to show that the resulting PDZ-LxxLL chimera is a bivalent nanomolar ligand of E6, while its separated PDZ and LxxLL components are only micromolar binders. The chimera binds to all of the hrm-HPV E6 proteins tested but not to low-risk mucosal or cutaneous HPV E6. Adenovirus-mediated expression of the chimera specifically induces the death of HPV-positive cells, concomitant with increased levels of the tumour suppressor P53, its transcriptional target p21, and the apoptosis marker cleaved caspase 3. The bifunctional PDZ-LxxLL chimera opens new perspectives for the diagnosis and treatment of HPV-induced cancers.


Subject(s)
DNA-Binding Proteins/metabolism , Human papillomavirus 16/metabolism , Human papillomavirus 18/metabolism , Neoplasms/virology , Oncogene Proteins, Viral/metabolism , Papillomavirus Infections/virology , Recombinant Fusion Proteins/metabolism , Repressor Proteins/metabolism , Adenoviridae/genetics , Amino Acid Motifs , Binding Sites , Cell Death , Cell Line , DNA-Binding Proteins/chemistry , Gene Expression , HeLa Cells , Human papillomavirus 16/chemistry , Human papillomavirus 18/chemistry , Humans , Ligands , Models, Molecular , Neoplasms/metabolism , Neoplasms/therapy , Oncogene Proteins, Viral/chemistry , PDZ Domains , Papillomavirus Infections/metabolism , Papillomavirus Infections/therapy , Protein Binding , Recombinant Fusion Proteins/chemistry , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/pharmacology , Repressor Proteins/chemistry , Tumor Suppressor Protein p53/metabolism
13.
Proc Natl Acad Sci U S A ; 111(50): 17869-74, 2014 Dec 16.
Article in English | MEDLINE | ID: mdl-25453085

ABSTRACT

Protein oligomers have been implicated as toxic agents in a wide range of amyloid-related diseases. However, it has remained unsolved whether the oligomers are a necessary step in the formation of amyloid fibrils or just a dangerous byproduct. Analogously, it has not been resolved if the amyloid nucleation process is a classical one-step nucleation process or a two-step process involving prenucleation clusters. We use coarse-grained computer simulations to study the effect of nonspecific attractions between peptides on the primary nucleation process underlying amyloid fibrillization. We find that, for peptides that do not attract, the classical one-step nucleation mechanism is possible but only at nonphysiologically high peptide concentrations. At low peptide concentrations, which mimic the physiologically relevant regime, attractive interpeptide interactions are essential for fibril formation. Nucleation then inevitably takes place through a two-step mechanism involving prefibrillar oligomers. We show that oligomers not only help peptides meet each other but also, create an environment that facilitates the conversion of monomers into the ß-sheet-rich form characteristic of fibrils. Nucleation typically does not proceed through the most prevalent oligomers but through an oligomer size that is only observed in rare fluctuations, which is why such aggregates might be hard to capture experimentally. Finally, we find that the nucleation of amyloid fibrils cannot be described by classical nucleation theory: in the two-step mechanism, the critical nucleus size increases with increases in both concentration and interpeptide interactions, which is in direct contrast with predictions from classical nucleation theory.


Subject(s)
Amyloid/biosynthesis , Amyloid/metabolism , Models, Molecular , Protein Aggregates/physiology , Amyloid/physiology , Molecular Dynamics Simulation , Protein Conformation
14.
Chem Soc Rev ; 43(13): 4871-93, 2014 Jul 07.
Article in English | MEDLINE | ID: mdl-24759934

ABSTRACT

The OPEP coarse-grained protein model has been applied to a wide range of applications since its first release 15 years ago. The model, which combines energetic and structural accuracy and chemical specificity, allows the study of single protein properties, DNA-RNA complexes, amyloid fibril formation and protein suspensions in a crowded environment. Here we first review the current state of the model and the most exciting applications using advanced conformational sampling methods. We then present the current limitations and a perspective on the ongoing developments.


Subject(s)
Amyloid/chemistry , DNA/chemistry , Models, Molecular , Proteins/chemistry , RNA/chemistry
15.
J Chem Inf Model ; 53(9): 2471-82, 2013 Sep 23.
Article in English | MEDLINE | ID: mdl-23957210

ABSTRACT

Characterizing the variability within an ensemble of protein structures is a common requirement in structural biology and bioinformatics. With the increasing number of protein structures becoming available, there is a need for new tools capable of automating the structural comparison of large ensemble of structures. We present Protein Structural Statistics (PSS), a command-line program written in Perl for Unix-like environments, dedicated to the calculation of structural statistics for a set of proteins. PSS can perform multiple sequence alignments, structure superpositions, calculate Cartesian and dihedral coordinate statistics, and execute cluster analyses. An HTML report that contains a convenient summary of results with figures, tables, and hyperlinks can also be produced. PSS is a new tool providing an automated way to compare multiple structures. It integrates various types of structural analyses through an user-friendly and flexible interface, facilitating the access to powerful but more specialized programs. PSS is easy to modify and extend and is distributed under a free and open source license. The relevance of PSS is illustrated by examples of application to pertinent biological problems.


Subject(s)
Computational Biology/methods , Proteins/chemistry , Software , Cyclin-Dependent Kinase 2/chemistry , Cyclin-Dependent Kinase 2/metabolism , Humans , Models, Molecular , Protein Conformation , Proteins/metabolism , Receptors, Cytoplasmic and Nuclear/chemistry , Receptors, Cytoplasmic and Nuclear/metabolism
16.
PLoS One ; 8(7): e67810, 2013.
Article in English | MEDLINE | ID: mdl-23874451

ABSTRACT

BACKGROUND: PGC-1α is a crucial regulator of cellular metabolism and energy homeostasis that functionally acts together with the estrogen-related receptors (ERRα and ERRγ) in the regulation of mitochondrial and metabolic gene networks. Dimerization of the ERRs is a pre-requisite for interactions with PGC-1α and other coactivators, eventually leading to transactivation. It was suggested recently (Devarakonda et al) that PGC-1α binds in a strikingly different manner to ERRγ ligand-binding domains (LBDs) compared to its mode of binding to ERRα and other nuclear receptors (NRs), where it interacts directly with the two ERRγ homodimer subunits. METHODS/PRINCIPAL FINDINGS: Here, we show that PGC-1α receptor interacting domain (RID) binds in an almost identical manner to ERRα and ERRγ homodimers. Microscale thermophoresis demonstrated that the interactions between PGC-1α RID and ERR LBDs involve a single receptor subunit through high-affinity, ERR-specific L3 and low-affinity L2 interactions. NMR studies further defined the limits of PGC-1α RID that interacts with ERRs. Consistent with these findings, the solution structures of PGC-1α/ERRα LBDs and PGC-1α/ERRγ LBDs complexes share an identical architecture with an asymmetric binding of PGC-1α to homodimeric ERR. CONCLUSIONS/SIGNIFICANCE: These studies provide the molecular determinants for the specificity of interactions between PGC-1α and the ERRs, whereby negative cooperativity prevails in the binding of the coactivators to these receptors. Our work indicates that allosteric regulation may be a general mechanism controlling the binding of the coactivators to homodimers.


Subject(s)
Receptors, Estrogen/metabolism , Transcription Factors/metabolism , Amino Acid Sequence , Humans , Models, Molecular , Molecular Sequence Data , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha , Protein Binding , Protein Conformation , Protein Folding , Protein Interaction Domains and Motifs , Protein Multimerization , Protein Subunits/chemistry , Protein Subunits/metabolism , Receptors, Estrogen/chemistry , Scattering, Small Angle , Transcription Factors/chemistry , X-Ray Diffraction , ERRalpha Estrogen-Related Receptor
17.
PLoS Comput Biol ; 9(4): e1003012, 2013 Apr.
Article in English | MEDLINE | ID: mdl-23637584

ABSTRACT

Nuclear receptor proteins constitute a superfamily of proteins that function as ligand dependent transcription factors. They are implicated in the transcriptional cascades underlying many physiological phenomena, such as embryogenesis, cell growth and differentiation, and apoptosis, making them one of the major signal transduction paradigms in metazoans. Regulation of these receptors occurs through the binding of hormones, and in the case of the retinoic acid receptor (RAR), through the binding of retinoic acid (RA). In addition to this canonical scenario of RAR activity, recent discoveries have shown that RAR regulation also occurs as a result of phosphorylation. In fact, RA induces non-genomic effects, such as the activation of kinase signaling pathways, resulting in the phosphorylation of several targets including RARs themselves. In the case of RARα, phosphorylation of Ser369 located in loop L9-10 of the ligand-binding domain leads to an increase in the affinity for the protein cyclin H, which is part of the Cdk-activating kinase complex of the general transcription factor TFIIH. The cyclin H binding site in RARα is situated more than 40 Å from the phosphorylated serine. Using molecular dynamics simulations of the unphosphorylated and phosphorylated forms of the receptor RARα, we analyzed the structural implications of receptor phosphorylation, which led to the identification of a structural mechanism for the allosteric coupling between the two remote sites of interest. The results show that phosphorylation leads to a reorganization of a local salt bridge network, which induces changes in helix extension and orientation that affects the cyclin H binding site. This results in changes in conformation and flexibility of the latter. The high conservation of the residues implicated in this signal transduction suggests a mechanism that could be applied to other nuclear receptor proteins.


Subject(s)
Gene Expression Regulation , Receptors, Retinoic Acid/metabolism , Allosteric Regulation , Allosteric Site , Animals , Binding Sites , Cell Nucleus/metabolism , Computer Simulation , Crystallography, X-Ray , Cyclin H/chemistry , Ligands , Mice , Phosphorylation , Protein Binding , Protein Structure, Secondary , Retinoic Acid Receptor alpha , Salts/chemistry , Serine/chemistry , Signal Transduction , Solvents/chemistry , Transcriptional Activation , Tretinoin/metabolism
18.
Hum Mol Genet ; 21(26): 5417-28, 2012 Dec 15.
Article in English | MEDLINE | ID: mdl-22965875

ABSTRACT

Human prion diseases are a heterogeneous group of fatal neurodegenerative disorders, characterized by the deposition of the partially protease-resistant prion protein (PrP(res)), astrocytosis, neuronal loss and spongiform change in the brain. Among inherited forms that represent 15% of patients, different phenotypes have been described depending on the variations detected at different positions within the prion protein gene. Here, we report a new mechanism governing the phenotypic variability of inherited prion diseases. First, we observed that the substitution at residue 211 with either Gln or Asp leads to distinct disorders at the clinical, neuropathological and biochemical levels (Creutzfeldt-Jakob disease or Gerstmann-Sträussler-Scheinker syndrome with abundant amyloid plaques and tau neurofibrillar pathology). Then, using molecular dynamics simulations and biophysical characterization of mutant proteins and an in vitro model of PrP conversion, we found evidence that each substitution impacts differently the stability of PrP and its propensity to produce different protease resistant fragments that may contribute to the phenotypical switch. Thus, subtle differences in the PrP primary structure and stability are sufficient to control amyloid plaques formation and tau abnormal phosphorylation and fibrillation. This mechanism is unique among neurodegenerative disorders and is consistent with the prion hypothesis that proposes a conformational change as the key pathological event in prion disorders.


Subject(s)
Creutzfeldt-Jakob Syndrome/genetics , Gerstmann-Straussler-Scheinker Disease/genetics , Prions/genetics , Amino Acid Substitution , Cloning, Molecular , Creutzfeldt-Jakob Syndrome/pathology , Gerstmann-Straussler-Scheinker Disease/pathology , Humans , Models, Molecular , Molecular Dynamics Simulation , Mutation , Phenotype , Phosphorylation , Plaque, Amyloid/genetics , Plaque, Amyloid/metabolism , Prions/metabolism , Protein Conformation
19.
J Med Chem ; 55(19): 8440-9, 2012 Oct 11.
Article in English | MEDLINE | ID: mdl-22957834

ABSTRACT

Actual use of the active form of vitamin D (calcitriol or 1α,25-dihydroxyvitamin D(3)) to treat hyperproliferative disorders is hampered by calcemic effects, hence the continuous development of chemically modified analogues with dissociated profiles. Structurally distinct nonsecosteroidal analogues have been developed to mimic calcitriol activity profiles with low calcium serum levels. Here, we report the crystallographic study of vitamin D nuclear receptor (VDR) ligand binding domain in complexes with six nonsecosteroidal analogues harboring two or three phenyl rings. These compounds induce a stimulated transcription in the nanomolar range, similar to calcitriol. Examination of the protein-ligand interactions reveals the mode of binding of these nonsecosteroidal compounds and highlights the role of the various chemical modifications of the ligands to VDR binding and activity, notably (de)solvation effects. The structures with the tris-aromatic ligands exhibit a rearrangement of a novel region of the VDR ligand binding pocket, helix H6.


Subject(s)
Benzene Derivatives/chemistry , Models, Molecular , Receptors, Calcitriol/chemistry , Animals , Benzene Derivatives/pharmacology , Biphenyl Compounds/chemistry , Biphenyl Compounds/pharmacology , Calcitriol/chemistry , Crystallography, X-Ray , HeLa Cells , Humans , Ligands , Phenyl Ethers/chemistry , Phenyl Ethers/pharmacology , Protein Structure, Secondary , Protein Structure, Tertiary , Receptors, Calcitriol/agonists , Receptors, Calcitriol/genetics , Static Electricity , Structure-Activity Relationship , Transcriptional Activation , Zebrafish Proteins/agonists , Zebrafish Proteins/chemistry , Zebrafish Proteins/genetics
20.
J Phys Chem B ; 116(30): 8741-52, 2012 Aug 02.
Article in English | MEDLINE | ID: mdl-22742737

ABSTRACT

Coarse-grained protein models with various levels of granularity and degrees of freedom offer the possibility to explore many phenomena including folding, assembly, and recognition in terms of dynamics and thermodynamics that are inaccessible to all-atom representations in explicit aqueous solution. Here, we present a refined version of the coarse-grained optimized potential for efficient protein structure prediction (OPEP) based on a six-bead representation. The OPEP version 4.0 parameter set, which uses a new analytical formulation for the nonbonded interactions and adds specific side-chain-side-chain interactions for α-helix, is subjected to three tests. First, we show that molecular dynamics simulations at 300 K preserve the experimental rigid conformations of 17 proteins with 37-152 amino acids within a root-mean-square deviation (RMSD) of 3.1 Å after 30 ns. Extending the simulation time to 100 ns for five proteins does not change the RMSDs. Second, replica exchange molecular dynamics (REMD) simulations recover the NMR structures of three prototypical ß-hairpin and α-helix peptides and the NMR three-stranded ß-sheet topology of a 37-residue WW domain, starting from randomly chosen states. Third, REMD simulations on the ccß peptide show a temperature transition from a three-stranded coiled coil to amyloid-like aggregates consistent with experiments, while simulations on low molecular weight aggregates of the prion protein helix 1 do not. Overall, these studies indicate the effectiveness of our OPEP4 coarse-grained model for protein folding and aggregation, and report two future directions for improvement.


Subject(s)
Amyloidogenic Proteins/chemistry , Amyloidogenic Proteins/metabolism , Hydrogen Bonding , Magnetic Resonance Spectroscopy , Molecular Dynamics Simulation , Prions/chemistry , Protein Folding , Protein Structure, Secondary , Temperature , Thermodynamics
SELECTION OF CITATIONS
SEARCH DETAIL
...