Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Polymers (Basel) ; 16(11)2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38891527

ABSTRACT

Using a modified co-precipitation method, 11(2) nm γ-Fe2O3 nanoparticles functionalized with PSSNa [Poly(sodium 4-styrenesulfonate)] saloplastic polymer were successfully synthesized, and their structural, vibrational, electronic, thermal, colloidal, hyperfine, and magnetic properties were systematically studied using various analytic techniques. The results showed that the functionalized γ-Fe2O3/PSSNa nanohybrid has physicochemical properties that allow it to be applied in the magnetic remediation process of water. Before being applied as a nanoadsorbent in real water treatment, a short-term acute assay was developed and standardized using a Daphnia magna biomarker. The ecotoxicological tests indicated that the different concentrations of the functionalized nanohybrid may affect the mortality of the Daphnia magna population during the first 24 h of exposure. A lethal concentration of 533(5) mg L-1 was found. At high concentrations, morphological changes were also seen in the body, heart, and antenna. Therefore, these results suggested the presence of alterations in normal growth and swimming skills. The main changes observed in the D. magna features were basically caused by the PSSNa polymer due to its highly stable colloidal properties (zeta potential > -30 mV) that permit a direct and constant interaction with the Daphnia magna neonates.

2.
Nanomaterials (Basel) ; 14(9)2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38727379

ABSTRACT

A novel magnetic composite made of Peruvian pyroclastic dust material decorated with maghemite nanoparticles was synthesized and characterized using a variety of analytic techniques. The 13 nm maghemite nanoparticles were grown on the pyroclastic dust using the conventional coprecipitation chemical route. A short-term acute assay was developed to study the ecotoxicological behavior of the water flea, Daphnia magna. A 24 h-lethal concentration (LC50) value equal to 123.6 mg L-1 was determined only for the magnetic composite. While the pyroclastic dust material did not exhibit a lethal concentration, it caused morphologically significant changes (p < 0.05) for heart and tail parameters at high concentrations. Morphologies exposed to the magnetic composite above the 24 h-LC50 revealed less tolerance and significant changes in the body, heart, antenna, and eye. Hence, it affects biomarker growth and swimming. The reproduction rate was not affected by the raw pyroclastic dust material. However, the number of individuals showed a decrease with increasing composite concentrations. The present study indicates the LC50 value, which can be used as a reference concentration for in-situ water cleaning with this material without damaging or changing the Daphnia magna ecosystem.

3.
Toxics ; 12(4)2024 Mar 29.
Article in English | MEDLINE | ID: mdl-38668475

ABSTRACT

In this work, the synthesis and structural, thermal, vibrational, morphological, and electronic characterization of 2D-like pure graphene oxide (GO) and phosphorus-containing graphene oxide (GOP) sheets were investigated. The average thicknesses of GO and GOP were 0.8 µm and 3.1 µm, respectively. The electron energy-loss spectroscopy spectra were used to analyze the differences in the C-K and O-K energy edge bands between GO and GOP. In addition, colloidal stability was studied using dynamic light scattering and zeta potential physicochemical techniques, determining that as the concentration increases, the hydrodynamic diameter and electrostatic stability of GO and GOP increase. The colloidal stability was quite important to ensure the interaction between the suspended solid phase and the biomarker. The 2D-like materials were used to determine their ecotoxicological properties, such as the medium lethal concentration, a crucial parameter for understanding ecotoxicity. Acute ecotoxicity experiments (24 h) were conducted in triplicate to obtain robust statistics, with corresponding mean lethal concentration (LC50) of 11.4 mg L-1 and 9.8 mg L-1 for GO and GOP, respectively. The morphological parameters of GO and GOP were compared with a negative control. However, only the case of GO was analyzed, since the Daphnia magna (D. magna) set exposed to GOP died before completing the time required for morphological analysis. The results indicate that the GOP sample is more toxic than the GO, both during and after exposure. Furthermore, the morphological parameters with the greatest statistically significant changes (p<0.05) were associated with the heart and body, while the eye and tail showed less significant changes.

4.
Molecules ; 28(12)2023 Jun 07.
Article in English | MEDLINE | ID: mdl-37375151

ABSTRACT

The adsorption characteristics of titanium dioxide nanoparticles (nano-TiO2) for the removal of Pb(II) from irrigation water were investigated in this work. To accomplish this, several adsorption factors, such as contact time and pH, were tested to assess adsorption efficiencies and mechanisms. Before and after the adsorption experiments, commercial nano-TiO2 was studied using X-ray diffraction (XRD), scanning and transmission electron microscopy (SEM and TEM), energy dispersive spectroscopy (EDS), and X-ray photoelectron spectroscopy (XPS). The outcomes showed that anatase nano-TiO2 was remarkably efficient in cleaning Pb(II) from water, with a removal efficiency of more than 99% after only one hour of contact time at a pH of 6.5. Adsorption isotherms and kinetic adsorption data matched the Langmuir and Sips models quite well, showing that the adsorption process occurred at homogenous sites on the surface of nano-TiO2 by forming a Pb(II) adsorbate monolayer. The XRD and TEM analysis of nano-TiO2 following the adsorption procedure revealed a non-affected single phase (anatase) with crystallite sizes of 9.9 nm and particle sizes of 22.46 nm, respectively. According to the XPS data and analyzed adsorption data, Pb ions accumulated on the surface of nano-TiO2 through a three-step mechanism involving ion exchange and hydrogen bonding mechanisms. Overall, the findings indicate that nano-TiO2 has the potential to be used as an effective and long-lasting mesoporous adsorbent in the treatment and cleaning of Pb(II) from water bodies.

5.
Nanomaterials (Basel) ; 13(10)2023 May 20.
Article in English | MEDLINE | ID: mdl-37242100

ABSTRACT

Real water remediation is an important issue that requires the development of novel adsorbents with remarkable adsorption properties, permitting reusability. In this work, the surface and adsorption properties of bare magnetic iron oxide nanoparticles were systematically studied, before and after the application of a maghemite nanoadsorbent in two real Peruvian effluents severely contaminated with Pb(II), Pb(IV), Fe(III), and others. We were able to describe the Fe and Pb adsorption mechanisms that occurred at the particle surface. 57Fe Mössbauer and X-ray photoelectron spectroscopy results together with kinetic adsorption analyses gave evidence for two involved surface mechanisms: (i) surface deprotonation of maghemite nanoparticles (isoelectric point of pH = 2.3), forming Lewis sites bonding Pb complexes; and (ii) the formation of a thin inhomogeneous secondary layer of iron oxyhydroxide and adsorbed Pb compounds, as favored by surface physicochemical conditions. The magnetic nanoadsorbent enhanced the removal efficiency to values of ca. 96% and provided adsorptive properties with reusability due to the conserved morphological, structural, and magnetic properties. This makes it favorable for large-scale industrial applications.

6.
Nanomaterials (Basel) ; 13(5)2023 Mar 03.
Article in English | MEDLINE | ID: mdl-36903805

ABSTRACT

In this work, the structural, vibrational, morphological, and colloidal properties of commercial 15.1 nm TiO2 nanoparticles (NPs) and nanowires (NWs, 5.6 thickness, 74.6 nm length) were studied with the purpose of determining their ecotoxicological properties. This was achieved by evaluating acute ecotoxicity experiments carried out in the environmental bioindicator Daphnia magna, where their 24-h lethal concentration (LC50) and morphological changes were evaluated using a TiO2 suspension (pH = 7) with point of zero charge at 6.5 for TiO2 NPs (hydrodynamic diameter of 130 nm) and 5.3 for TiO2 NWs (hydrodynamic diameter of 118 nm). Their LC50 values were 157 and 166 mg L-1 for TiO2 NWs and TiO2 NPs, respectively. The reproduction rate of D. magna after fifteen days of exposure to TiO2 nanomorphologies was delayed (0 pups for TiO2 NWs and 45 neonates for TiO2 NPs) in comparison with the negative control (104 pups). From the morphological experiments, we may conclude that the harmful effects of TiO2 NWs are more severe than those of 100% anatase TiO2 NPs, likely associated with brookite (36.5 wt. %) and protonic trititanate (63.5 wt. %) presented in TiO2 NWs according to Rietveld quantitative phase analysis. Specifically, significant change in the heart morphological parameter was observed. In addition, the structural and morphological properties of TiO2 nanomorphologies were investigated using X-ray diffraction and electron microscopy techniques to confirm the physicochemical properties after the ecotoxicological experiments. The results reveal that no alteration in the chemical structure, size (16.5 nm for TiO2 NPs and 6.6 thickness and 79.2 nm length for NWs), and composition occurred. Hence, both TiO2 samples can be stored and reused for future environmental purposes, e.g., water nanoremediation.

7.
Int J Biol Macromol ; 226: 1041-1053, 2023 Jan 31.
Article in English | MEDLINE | ID: mdl-36435460

ABSTRACT

Injection-molded nanocomposites of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBHV) with 6 % of 3-hydroxyvalerate (HV) and amino-nanodiamonds (nD-A) were produced and characterized to investigate the effect of functionalized nanodiamonds on mechanical and biological behavior to bone replacement application. To prepare mixtures of PHBHV and nD-A in different concentrations, nD-A was dispersed in chloroform by sonication with 40 % of amplitude. Three specimens were characterized by infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), X-ray diffraction (DRX), differential scanning calorimetry (DSC), 3-point flexural tests, dynamic mechanical analysis (DMA), and scanning electron microscopy (SEM). FTIR and TGA evidenced the existence of interactions between the nD-A and PHBHV. The crystallinity degree of PHBHV slightly reduced (~9 %) in nanocomposites and the morphology of the crystals changed. Nanocomposites achieved satisfactory dispersion and distribution of nD-A for low concentrations. Elastic modulus (E) increased from 1.96 ± 0.20 (PHBHV) to 2.59 ± 0.19 GPa (PHBHV/1.0%nD-A) (30 %). Despite the relatively limited dispersion, PHBHV/2.0 % nD-A had the best combination of E, strength, and maximum deformation. It had the highest glass transition temperature (43.1 vs 40.3 °C of PHBHV) and the best adhesion coefficient and reinforcement effectiveness. PHBHV-nD-A did not induce toxicity in 7 days and allowed cell fixation and expansion. These bionanocomposites should be considered for supplementary studies for bone tissue engineering.


Subject(s)
Nanodiamonds , Polyesters , Polyesters/chemistry , Hydroxybutyrates , Bone and Bones
8.
Nanomaterials (Basel) ; 12(19)2022 Oct 08.
Article in English | MEDLINE | ID: mdl-36234644

ABSTRACT

Fe-substituted YFexCr1-xO3 crystalline compounds show promising magnetic and multiferroic properties. Here we report the synthesis and characterization of several compositions from this series. Using the autocombustion route, various compositions (x = 0.25, 0.50, 0.6, 0.75, 0.9, and 1) were synthesized as high-quality crystalline powders. In order to obtain microscopic and atomic information about their structure and magnetism, characterization was performed using room temperature X-ray diffraction and energy dispersion analysis as well as temperature-dependent neutron diffraction, magnetometry, and 57Fe Mössbauer spectrometry. Rietveld analysis of the diffraction data revealed a crystallite size of 84 (8) nm for YFeO3, while energy dispersion analysis indicated compositions close to the nominal compositions. The magnetic results suggested an enhancement of the weak ferromagnetism for the YFeO3 phase due to two contributions. First, a high magnetocrystalline anisotropy was associated with the crystalline character that favored a unique high canting angle of the antiferromagnetic phase (13°), as indicated by the neutron diffraction analysis. This was also evidenced by the high magnetic hysteresis curves up to 90 kOe by a remarkable high critical coercivity value of 46.7 kOe at room temperature. Second, the Dzyaloshinskii-Moriya interactions between homogenous and heterogeneous magnetic pairs resulted from the inhomogeneous distribution of Fe3+ and Cr3+ ions, as indicated by 57Fe Mössbauer studies. Together, these results point to new methods of controlling the magnetic properties of these materials.

9.
Int J Mol Sci ; 23(15)2022 Jul 27.
Article in English | MEDLINE | ID: mdl-35955414

ABSTRACT

Novel magnetic nanohybrids composed of nanomaghemite covered by organic molecules were successfully synthesized at room temperature with different functionalization agents (sodium polystyrene sulfonate, oxalic acid, and cetyltrimethylammonium bromide) in low and high concentrations. Structural, vibrational, morphological, electron energy-loss spectroscopy, magnetic, and Mössbauer characterizations unraveled the presence of mainly cubic inverse spinel maghemite (γ-Fe2O3), whilst X-ray diffraction and 57Fe Mössbauer spectroscopy showed that most samples contain a minor amount of goethite phase (α-FeOOH). Raman analysis at different laser power revealed a threshold value of 0.83 mW for all samples, for which the γ-Fe2O3 to α-Fe2O3 phase transition was observed. Imaging microscopy revealed controlled-size morphologies of nanoparticles, with sizes in the range from 8 to 12 nm. Organic functionalization of the magnetic nanoparticles was demonstrated by vibrational and thermogravimetric measurements. For some samples, Raman, magnetic, and Mössbauer measurements suggested an even more complex core-shell-like configuration, with a thin shell containing magnetite (Fe3O4) covering the γ-Fe2O3 surface, thus causing an increase in the saturation magnetization of approximately 11% against nanomaghemite. Field cooling hysteresis curves at 5 K did not evidence an exchange bias effect, confirming that the goethite phase is not directly interacting magnetically with the functionalized maghemite nanoparticles. These magnetic nanohybrids may be suitable for applications in effluent remediation and biomedicine.


Subject(s)
Nanoparticles , Iron/chemistry , Nanoparticles/chemistry , Oxides/chemistry , Particle Size , Temperature
10.
Nanomaterials (Basel) ; 12(11)2022 May 25.
Article in English | MEDLINE | ID: mdl-35683661

ABSTRACT

A ternary nanocomposite made of nanomaghemite, nanoanatase, and graphene oxide has been successfully synthesized using an inorganic coprecipitation approach, and it has been systematically investigated by X-ray diffraction, transmission electron microscopy, and different spectrocopic techniques (electron energy loss, µ-Raman, and 57Fe Mössbauer) after interaction with an effluent containing Daphnia magna individuals. Specifically, the influence of the nanocomposite over the Daphnia magna carapace, administered in two doses (0.5 mg mL-1 and 1 mg mL-1), has been characterized using µ-Raman spectroscopy before and after laser burning protocols, producing information about the physicochemical interaction with the biomarker. The thermal stability of the nanocomposite was found to be equal to 500 °C, where the nanoanatase and the nanomaghemite phases have respectively conserved their structural identities. The magnetic properties of the nanomaghemite have also been kept unchanged even after the high-temperature experiments and exposure to Daphnia magna. In particular, the size, texture, and structural and morphological properties of the ternary nanocomposite have not shown any significant physicochemical modifications after magnetic decantation recuperation. A significant result is that the graphene oxide reduction was kept even after the ecotoxicological assays. These sets of observations are based on the fact that while the UV-Vis spectrum has confirmed the graphene oxide reduction with a localized peak at 260 nm, the 300-K and 15-K 57Fe Mössbauer spectra have only revealed the presence of stoichiometric maghemite, i.e., the two well-defined static magnetic sextets often found in the bulk ferrimagnetic counterpart phase. The Mössbauer results have also agreed with the trivalent-like valence state of Fe ions, as also suggested by electron energy loss spectroscopy data. Thus, the ternary nanocomposite does not substantially affect the Daphnia magna, and it can be easily recovered using an ordinary magnetic decantation protocol due to the ferrimagnetic-like character of the nanomaghemite phase. Consequently, it shows remarkable physicochemical properties for further reuse, such as cleaning by polluted effluents, at least where Daphnia magna species are present.

SELECTION OF CITATIONS
SEARCH DETAIL
...